纳米材料就是把大的东西通过高技术造成小的比较精细的东西!各位大哥大姐我的问题虽然不好但是都是用心去回答的,希望你们可以给我个最佳谢谢了哈!祝你玩的愉快!

纳米是英文namometer的译音,是一个物理学上的度量单位,1纳米是1米的十亿分之一;相当于45个原子排列起来的长度。通俗一点说,相当于万分之一头发丝粗细。就象毫米、微米一样,纳米是一个尺度概念,并没有物理内涵。当物质到纳米尺度以后,大约是在1—100纳米这个范围空间,物质的性能就会发生突变,出现特殊性能。这种既具不同于原来组成的原子、分子,也不同于宏观的物质的特殊性能构成的材料,即为纳米材料。如果仅仅是尺度达到纳米,而没有特殊性能的材料,也不能叫纳米材料。过去,人们只注意原子、分子或者宇宙空间,常常忽略这个中间领域,而这个领域实际上大量存在于自然界,只是以前没有认识到这个尺度范围的性能。第一个真正认识到它的性能并引用纳米概念的是日本科学家,他们在20世纪70年代用蒸发法制备超微离子,并通过研究它的性能发现:一个导电、导热的铜、银导体做成纳米尺度以后,它就失去原来的性质,表现出既不导电、也不导热。磁性材料也是如此,象铁钴合金,把它做成大约20—30纳米大小,磁畴就变成单磁畴,它的磁性要比原来高1000倍。80年代中期,人们就正式把这类材料命名为纳米材料。 参考资料: http://cache.baidu.com/c?word=%C4%C9%C3%D7%3B%B2%C4%C1%CF%2C%CC%D8%D5%F7&url=http%3A//202%2E114%2E89%2E18/chemical%5Fresource/download/hxycl/6%2Epdf&p=8d73841286cc43f313be9b7551&user=baidu 本回答被提问者采纳

纳米材料在每个学科中都有他一定的应用基础,关键是要把握住能源的基础来自于自然界当中。推之于然、而之于幸就应当是当今世界上很强的抢手货了。 参考资料: 百度一下

有很多,如XRD、DRS、XPS、SEM、TEM等

纳米粒子表征手段:1.形貌,电子显微镜(TEM),普通的是电子枪发射光电子,还有场发射的,分辨率和适应性更好;2.结构,一般是需要光电电子显微镜,扫描电子显微镜不行3.晶形,单晶衍射仪,XRD,判断纳米粒子的晶形及结晶度4.组成,一般是红外,结合四大谱图,判断核壳组成,只作为佐证5.性能,光-紫外,荧光;电--原子力显微镜,拉曼;磁--原子力显微镜或者专用的仪器纳米微粒的影响因素很多:纳米微粒一般容易团聚,所以表面活性剂,自身组成,以及存放环境都会影响纳米微粒在合成阶段,很多因素都会影响产物,时间,温度,剪切力,溶剂,滴加速度及顺序,冷却方法,甚至药品纯度,产地,批次,都会影响最终产物的形貌或者性能,在合成阶段,最好多做几次实验,验证重复性,表征阶段,千万不要刻意寻找理想形貌,尊重科学,尊重事实,一个铜网上面可能有很多形貌,说明实验还得继续。。。。。。四氧化三铁作为磁性纳米微粒,合成阶段早做烂了,主要是性能的表征,还有复合,但是国内的表征很不看好应用主要是作为磁溶液,生物标记,缓释核,以及探伤,很多啦,多看看文献。注意,表征的时候不要用电磁的显微镜,会对显微镜产生永久的损伤,产生不可挽回的偏差,需要用场发射或者扫描

同上,还有释放远红外。表面小尺寸。

范围有些宽。纳米材料的表征包括结构、表面、电学、光学和其他性质。是多学科技术。

透射电镜(结合图象分析仪)法,光子相关谱(PCS)(或称动态光散射),比表面积法以及X射线小角散射法(SAXS)等四种。1、透射电镜法:透射电镜是一种直观、可靠的绝对尺度测定方法,对于纳米颗粒,它可以观察其大小、形状,还可以根据像的衬度来估计颗粒的厚度,显微镜结合图像分析法还可以选择地进行观测和统计,分门别类给出粒度分布。如果将颗粒进行包埋、镶嵌和切片减薄制样,还可以对颗粒内部的微观结构作进一步地分析。当对于所检测的样品清晰成像后,就是一个测量和统计的问题。一种作法是选取足够多的视场进行照相,获得数百乃至数千个颗粒的电镜照片,再将每张照片经扫描进入图象分析仪进行分析统计。按标准刻度计算颗粒的等效投影面积直径,同时统计落在各个粒度区间的颗粒个数。然后计算出以个数为基准的粒度组成、平均粒度 、分布方差等,并可输出相应的直方分布图。在应用软件中还包括个数分布向体积分布转换的功能,往往将这两种分布及相关的直方图和统计平均值等都出来。该方法的优点是直观,而且可以得到颗粒形状信息,缺点是要求颗粒要处于良好的分散状态,另外,由于用显微镜观测时所需试样量非常少,所以对试样的代表性要求严格。因此取样和制样的方法必须规范;而且要对大量的颗粒的粒径进行统计才能得到粒度分布值或平均粒径。2、光子相关谱法:该方法是基于分子热运动效应,悬浮于液体中的微细颗粒都在不停地作布朗运动,其无规律运动的速率与湿度和液体的粘度有关,同时也与颗粒本身的大小有关。对于大的颗粒其移动相对较慢,而小的颗粒则移动较快。这种迁移导致颗粒在液体中的扩散,对分散于粘度为η的球形颗粒,彼此之间无交互作用时,它的扩散系数D同粒径x之间的关系满足一关系。而当一束激光通过稀薄的颗粒悬浮液时,被照射的颗粒将会向四周散射光。在某一角度下所测散射光的强度和位相将取决于颗粒在光束中的位置以及颗粒与探测器之间的距离。由于颗粒在液体中不断地作布朗运动,它们的位置随机变动,因而其散射光强度也随时间波动。颗粒越小,扩散运动越强,散射光强度随即涨落的速率也就越快;反之则相反。光子相关谱(PCS)法这正是从测量分析这种散射光强的涨落函数中获得颗粒的动态信息,求出颗粒的平移扩散系数而得到颗粒得粒度信息的,所以又称为动态光散射法。光子相关谱法粒度分析的范围约3nm~1000nm。测试速度快,对粒度分布集中且颗粒分散好的样品,测量结果重复性好。该方法缺点是要求样品要处于良好的分散状态,否则测出的是团聚体的粒度大小。3、比表面积法:粉末的比表面积为单位体积或单位质量粉末颗粒的总表面积,它包括所有颗粒的外表面积以及与外表面积相联通的孔所提供的内表面积。粉末的比表面积同其粒度、粒度分布、颗粒的形状和表面粗糙度等众多因数有关,它是粉末多分散性的综合反映。测定粉末比表面积的方法很多,如空气透过法、BET吸附法、浸润热法、压汞法、X射线小角散射法等,另外也可以根据所测粉末的粒度分布和观察的颗粒形状因子来进行计算。在以上方法中,BET低温氮吸附法是应用最广的经典方法,测量比表面积的BET吸附法,是基于测定样品表面上气体单分子层的吸附量。最广泛使用的吸附剂是氮气,测定范围在1—1000m2/g,十分适合对纳米粉末的测定;该方法的优点是设备简单,测试速度快,但它仅仅是纳米粉末的比表面积的信息,通过换算可以得到平均粒径的信息,但不能知道其粒度分布的情况。4、X射线小角散射法:X射线小角散射(SAXS)系发生于原光束附近0~几度范围内的相干散射现象,物质内部1至数百纳米尺度的电子密度的起伏是产生这种散射效应的根本原因。因此SAXS技术可以用来表征物质的长周期、准周期结构以及呈无规分布的纳米体系。广泛地用于1~300nm范围内的各种金属和非金属粉末粒度分布的测定,也可用于胶体溶液、磁性液体、病毒、生物大分子以及各种材料中所形成的纳米级微孔、GP区和沉淀析出相尺寸分布的测定。SAXS的结果所反映的为一次颗粒的尺寸:所谓一次颗粒,即原颗粒,可以相互分离而独立存在的颗粒。很多颗粒粘附在一起形成团粒,这在纳米粉末中是相当常见的。如不能将其中的颗粒有效地分散开来,它们将会作为一个整体而沉降、遮挡和散射可见光,其测试结果势必为团粒尺寸的反映。而SAXS测试结果所反映的既非晶粒亦非团粒而是一次颗粒的尺寸。测试结果的统计代表性:检测结果是否具有代表性,当取样合理时,主要是看测量信息来源于多少个颗粒。对小角散射而言就是要看测量时X射线大约照射上多少颗粒,根据上述参数可以算出X射线辐照体积内的颗粒数近似为1.8×10的10次方个。因此,我们可以认为一般小角散射信息来自10的9次方~10的11次方个颗粒,这也就保证其结果的统计代表性。

主要包括纳米粒子的XRD表征、纳米粒子透射电子显微镜及光谱分析、纳米粒子的扫描透射电子显微术、纳米团簇的扫描探针显微术、纳米材料光谱学和自组装纳米结构材料的核磁共振表征。纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。扩展资料自20世纪70年代纳米颗粒材料问世以来,从研究内涵和特点大致可划分为三个阶段:第一阶段:主要是在实验室探索用各种方法制备各种材料的纳米颗粒粉体或合成块体,研究评估表征的方法,探索纳米材料不同于普通材料的特殊性能;研究对象一般局限在单一材料和单相材料,国际上通常把这种材料称为纳米晶或纳米相材料。第二阶段:人们关注的热点是如何利用纳米材料已发掘的物理和化学特性,设计纳米复合材料,复合材料的合成和物性探索一度成为纳米材料研究的主导方向。第三阶段:纳米组装体系、人工组装合成的纳米结构材料体系正在成为纳米材料研究的新热点。国际上把这类材料称为纳米组装材料体系或者纳米尺度的图案材料。它的基本内涵是以纳米颗粒以及它们组成的纳米丝、管为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系。参考资料来源:百度百科——纳米材料表征参考资料来源:百度百科——纳米材料

纳米材料的表征方法有五部分,分别是形貌分析粒度分析成分分析结构分析表面界面分析概念纳米材料是指在三维空间中至少有一维处于纳米尺寸(0.1-100 nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。分类纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

粒度分析:分析颗粒尺寸XRD:分析相种类和结晶性TEM(透射电镜):分析形貌、微观晶格和结晶性ZETA电位:分析颗粒表面的活性基团其他的还有一些光学性质、光催化性质的表征等 本回答被网友采纳

高分辨透射电镜(HRTEM )、扫描隧道显微镜(STM ) 、场离子显微镜(F IM )、电子和X 射线以及中子衍射技术、扩展的X 射线吸收精细结构、核磁共振、拉曼光谱和穆斯堡尔谱、正电子寿命谱、示差扫描库仑仪、质谱仪、X 射线、荧光仪、原子吸收光谱、俄歇电子谱仪和氢吸收等

TEM,XRD,AFM,PL,Abs, ....