生物相容性指材料在机体的特定部位引起恰当的反应。根据国际标准化组织(International Standards Organization,ISO)会议的解释,生物相容性是指生命体组织对非活性材料产生反应的一种性能,一般是zhidao指材料与宿主之间的相容性。生物材回料植入人体后,对特定的生物组织环境产生影响和作用,生物组织对生物材料也会产生影响和作用,两者的循环作用一直持续,直到达到平衡或者植入物被去除。生物相容性是生物材料研究中始终贯穿的主题。生物相容性可以分为生物学反应和材料反应两部分,其中生物反应包括血液反应,免疫反应和组织反应;材料反应主要表现在材料物理和化答学性质的改变。

生物相容性就是材料在机体的特定部位引起恰当的反应。生物相容性包括分为生物学反应和材料反应两部分。其中生物反应包括血液反应,免疫反应和组织反应;材料反应主要表现在材料物理和化学性质的改变。生物相容性主要决定于材料的性质和用途。材料及制品本身的性质,包括形状、大小及表面粗糙程度,材料聚合或制备过程残留的有毒低分子物质、材料加工工艺污染、材料在体内的降解产物等都与其生物相容性相关。材料与机体短期接触会对细胞及全身产生毒性、刺激性、致畸性和局部炎症;长期接触可能具有致突变、致畸和致癌作用;与血液接触引起凝血功能异常和溶血等,因此,当考虑将材料用于生物医学领域时,其生物相容性是需要考虑和评价的重要指标。扩展资料生物相容性分类:血液相容性、组织相容性(7a686964616fe78988e69d8331333431356666一般生物相容性) 。1、血液相容性: 材料用于心血管系统与血液直接接触,主要考察与血液的相互作用;  2、组织相容性: 材料与心血管系统外的组织和器官接触,主要考察与组织的相互作用。3、血液相容性要求: 抗血小板血栓形成; 抗凝血性; 抗溶血性; 抗白细胞减少性; 抗补体系统抗进性; 抗血浆蛋白吸附性; 抗细胞因子吸附性。参考资料来源:百度百科-生物相容性

生物相容性是指材料与生物体之间相互作用后产生的各种生物、物理、化学等反应的一种概念。一般地讲,就是材料植入人体后与人体相容程度,也就是说是否会对人体组织造成毒害作用。包括两个方面:宿主反应,是生物机体对植入材料的反应。材料反应,是材料对生物机体作用产生的反应,可导致材料结构破坏和性质e79fa5e98193e78988e69d8331333431343132改变。生物材料植入人体后,对特定的生物组织环境产生影响和作用,生物组织对生物材料也会产生影响和作用,两者的循环作用一直持续,直到达到平衡或者植入物被去除。生物相容性是生物材料研究中始终贯穿的主题。扩展资料:评价材料的生物相容性遵循生物安全性和生物功能性两个原则,既要求生物材料具有很低的毒性,同时要求生物材料在特定的应用中能够恰当地激发机体相应的功能。生物相容性的评价主要参考国际标准化组织10993和国家标准GB/T16886的要求,通过一系列体外、体内实验来进行。材料与生物体的相互作用情况决定了材料生物组织相容性的程度。材料的组织相容性受材料两种特征尺度水平上的因素的影响。一是微观分子水平,这类影响主要表现为材料表面的化学组成、形态结构、电荷性质及其分布等等。另一个是宏观尺度水平,这类影响包括材料的物理力学性质、材料的宏观形态尺寸等。而且,这类大尺度上的效应比分子尺度上发生的化学效应更为重要。参考资料来源:百度百科——生物相容性 本回答被网友采纳

生物zd相容性是指材料与生物体之间相互作用后产生的各种生物、物理、化学等反应的一种概念。一般地讲,就是材料植入人体后与内人体相容程度,也就是说是否会对人体组织造成毒害作用。包括两个方面:1宿主反应,是生物机体对植入材料的容反应;2材料反应,是材料对生物机体作用产生的反应,可导致材料结构破坏和性质改变。 本回答被网友采纳

生物材料表面物理化学性质是影响其生物相容性的直接因素还是间接因素 第1张

补肾还应该注意一个事项,那就是尽量不要食用过度苦寒,冰凉食物,比方苦瓜,鹅肉,啤酒等等,因为这些食物食用过多,不仅不利身体健康,而且还能伤害肾脏,所以大家应该注意,尽量不要食用过度苦寒食物。

我觉得,影响健康的主要因素是自己基因不够强大,后天弥补指的是,比如家庭经济很好,请一个健康理疗师,他会按你身体健康来调配营养搭配,这样你健康问题会很好。

  人类的健康取决于多种因素的影响和制约。目前,人们认为影响健康的主要因素有四种,即:环境因素、生物遗传因素、行为和生活方式因素及医疗卫生服务因素。其中生活方式因素和医疗卫生服务因素均属于环境因素中的社会环境因素,但由于这两种因素对人类健康具有突出的影响,所以将其置于突出的位置并与环境因素和生物遗传因素相提并论。因此,在分析影响健康的因素时,可以从环境因素和生物遗传因素两大方面进行描述。  1.环境因素环境是指围绕着人类空间及其直接或间接地影响人类生活的各种自然因素和社会因素之总和。因此,人类环境包括自然环境和社会环境。  (1)自然环境又称物质环境,是指围绕人类周围的客观物质世界,如水、空气、土壤及其他生物等。自然环境是人类生存的必要条件。在自然环境中,影响人类健康的因素主要有生物因素、物理因素和化学因素。  自然环境中的生物因素包括动物、植物及微生物。一些动物、植物及微生物为人类的生存提供了必要的保证,但另一些动物、植物及微生物却通过_直接或间接的方式影响甚至危害人类的健康。  自然环境中的物理因素包括气流、气温、气压、噪声、电离辐射、电磁辐射等。在自然状况下,物理因素一般对人类无危害,但当某些物理因素的强度、剂量及作用于人体的时间超出一定限度时,会对人类健康造成危害。  自然环境中的化学因素包括天然的无机化学物质、e799bee5baa6e997aee7ad94e4b893e5b19e31333262363036人工合成的化学物质及动物和微生物体内的化学元素。一些化学元素是保证人类正常活动和健康的必要元素;一些化学元素及化学物质在正常接触和使用情况下对人体无害,但当它们的浓度、剂量及与人体接触的时间超出一定限度时,将对人体产生严重的危害。  (2)社会环境又称非物质环境,是指人类在生产、生活和社会交往活动中相互间形成的生产关系、阶级关系和社会关系等。在社会环境中,有诸多的因素与人类健康有关,如社会制度、经济状况、人口状况、文化教育水平等,但对人类健康影响最大的两个因素是:行为和生活方式因素与医疗卫生服务因素。  行为是人类在其主观因素影响下产生的外部活动,而生活方式是指人们在长期的民族习俗、规范和家庭影响下所形成的一系列生活意识及习惯。随着社会的发展、人们健康观的转变以及人类疾病谱的改变,人类行为和生活方式对健康的影响越来越引起人们的重视。合理、卫生的行为和生活方式将促进、维护人类的健康,而不良的行为和生活方式将严重威胁人类的健康。特别是在我国,不良的行为和生活方式对人民健康的影响日益严重,吸烟、酗酒、吸毒、纵欲、赌博、滥用药物等不良行为和生活方式导致一系列身心疾病日益增多。  医疗卫生服务是指促进及维护人类健康的各类医疗、卫生活动。它既包括医疗机构所提供的诊断、治疗服务,也包括卫生保健机构提供的各种预防保健服务。一个国家医疗卫生服务资源的拥有、分布及利用将对其人民的健康状况起重要的作用。  2.生物遗传因素 生物遗传因素是指人类在长期生物进化过程中所形成的遗传、成熟、老化及机体内部的复合因素。生物遗传因素直接影响人类健康,它对人类诸多疾病的发生、发展及分布具有决定性影响。  后天的话主要是指锻炼之类的。 本回答被提问者采纳

你肯定是在赶交保健课作业 !!!!因为我都是

人类的健康取决于多种因素的影响和制约。目前,人们认为影响健康的主要因素有四种,即:环境因素、生物遗传因素、行为和生活方式因素及医疗卫生服务因素。其中生活方式因素和医疗卫生服务因素均属于环境因素中的社会环境因素,但由于这两种因素对人类健康具有突出的影响,所以将其置于突出的位置并与环境因素和生物遗传因素相提并论。因此,在分析影响健康的因素时,可以从环境因素和生物遗传因素两大方面进行描述。 1.环境因素环境是指围绕着人类空间及其直接或间接地影响人类生活的各种自然因素和社会因素之总和。因此,人类环境包括自然环境和社会环境。 (1)自然环境又称物质环境,是指围绕人类周围的客观物质世界,如水、空气、土壤及其他生物等。自然环境是人类生存的必要条件。在自然环境中,影响人类健康的因素主要有生物因素、物理因素和化学因素。 自然环境中的生物因素包括动物、植物及微生物。一些动物、植物及微生物为人类的生存提供了必要的保证,但另一些动物、植物及微生物却通过_直接或间接的方式影响甚至危害人类的健康。 自然环境中的物理因素包括气流、气温、气压、噪声、电离辐射、电磁辐射等。在自然状况下,物理因素一般对人类无危害,但当某些物理因素的强度、剂量及作用于人体的时间超出一定限度时,会对人类健康造成危害。 自然环境中的化学因素包括天然的无机化学物质、人工合成的化学物质及动物和微生物体内的化学元素。一些化学元素是保证人类正常活动和健康的必要元素;一些化学元素及化学物质在正常接触和使用情况下对人体无害,但当它们的浓度、剂量及与人体接触的时间超出一定限度时,将对人体产生严重的危害。 (2)社会环境又称非物质环境,是指人类在生产、生活和社会交往活动中相互间形成的生产关系、阶级关系和社会关系等。在社会环境中,有诸多的因素与人类健康有关,如社会制度、经济状况、人口状况、文化教育水平等,但对人类健康影响最大的两个因素是:行为和生活方式因素与医疗卫生服务因素。 行为是人类在其主观因素影响下产生的外部活动,而生活方式是指人们在长期的民族习俗、规范和家庭影响下所形成的一系列生活意识及习惯。随着社会的发展、人们健康观的转变以及人类疾病谱的改变,人类行为和生活方式对健康的影响越来越引起人们的重视。合理、卫生的行e799bee5baa6e79fa5e98193e59b9ee7ad9431333262363036为和生活方式将促进、维护人类的健康,而不良的行为和生活方式将严重威胁人类的健康。特别是在我国 医疗卫生服务是指促进及维护人类健康的各类医疗、卫生活动。它既包括医疗机构所提供的诊断、治疗服务,也包括卫生保健机构提供的各种预防保健服务。一个国家医疗卫生服务资源的拥有、分布及利用将对其人民的健康状况起重要的作用。 2.生物遗传因素 生物遗传因素是指人类在长期生物进化过程中所形成的遗传、成熟、老化及机体内部的复合因素。生物遗传因素直接影响人类健康,它对人类诸多疾病的发生、发展及分布具有决定性影响。 参考资料: 上面的那个抄我的 气

影响百健康的因素主要是生活习惯、饮食习惯。后天环境主要当然是居住环度境及工作知环境罗。就是说住大屋,唔驶做当然身体好啦,但需要配上道很好的生活习惯、饮食习惯。结论就系:回住大屋、食清淡嘢、答唔驶做嘢、早睡早起、做运动罗。

做生物相容检测,,产品外表面的清洁肯定会有一定影响的。  1、评价的依据和方法  生物相容性是指生命体组织对非活性材料产生的一种性能。  一般是指材料与宿主之间的相容性,包括组织相容性和血液相容性。  生物相容性既不引起生物体组织、血液等的不良反应。  生物相容性评价最基本内容之一是生物安全性。  生物安全性是指材料与人体之间相互作用下必须对人体无毒性、无致敏性、无刺激性、无遗传毒性、无致癌性,对人体组织、血液、免疫系统无不良反应。        产品  1  栓塞剂属于  6877  介入器材,与人体接触,能够在人体内进  行降解,对其生物相容性评价依据《  GB/T  16886.1-2011  医疗器械生  物学评价  _  第  1  部分:风险管理评价与试验》中的内容。产品  1  栓塞  剂生物学评价方法流程如下:    该器械与人体直接接触或间接接触  ――  获得材料的识别信息并考  虑化学表征  ――  材料与市场上器械所用材料相同  ――  该材料与市售器  械具有相同化学组成  ――  制造、灭菌相同、加工助剂不同  ――  没有足  够的风险评定所需充分的论证和  /  或临床相关数据  ――  根据材料化学  性质和接触类别和时间对器械进一步评价  ――  进行的生物学评价试  验的选择  ――  试验和  /  或豁免试验的论证  ――  进行毒理学风险评  定  ――  最终评价。    2  、产品所用材料的描述        产品  1  栓塞剂是采用明胶与甲醛e799bee5baa6e79fa5e98193e78988e69d8331333363353735交联而成,  其生产工艺与现在市售  的产品  2  颗粒栓塞剂生产工艺基本一致,经合成(交联)  、固化、洗    涤、冻干、灭菌而成,产品  2  颗粒栓塞剂在中国已经有使用数年的历  史,并具有良好的生物相容性,已经广泛应用了医疗器械行业。        经相关文献报道,产品  1  无全身毒性、无亚急性和亚慢性毒性、无  慢性毒性  [1]  ,  植入符合规定  [2]  、  无细胞毒性  [3]    ,  无刺激性和致敏性  [4]  ,  组织相容性好等特点。        3  、材料表征    3.1  医疗器械材料的定性与定量的说明或分析    3.1.1  主要材料名称:  明胶  :  由猪皮中含有的胶原蛋白不完全酸水解、  碱水解或酶降解后纯化得到的一种制品。  购自温州罗赛洛明胶有限公  司,属于药品辅料,执行《中华人民共和国药典》  2010  版标准。    3.1.2  加工助剂:甲醛、氢氧化纳、液体石蜡、吐温  80  。    3.2  医疗器械  /  材料与市售产品的等同性比较        3.2.1  产品  1  栓塞剂与市售产品产品  2  颗粒栓塞剂比较    项        目    产品  2  颗粒栓塞剂    产品  1  栓塞剂    对比说明        工作原理    产品  2  在血管内引起机械性栓塞,使局  部组织的血流减缓和中断,阻断肿瘤组  织的血液供应,和出血性病变组织的出  血。产品  2  的多孔海绵结构有物理吸附  能力。  产品  2  在栓塞  90  天内在机体内被  降解吸收。产品  2  本身不具任何药理作  用。    将产品  1  注入人体,以物理的  方式栓塞病变部位血管,以达  到梗死、  机化病变部位之目的,  从而维持正常组织的功能,并  在栓塞  14-90  天后,在肌体内  被降解吸收。产品本身不具任  何药理作用。        一致      结构组成    产品  2  颗粒分装于西林瓶中,经辐照灭  菌,一次性使用    本品系产品  1  分装于西林瓶  中,  经辐照灭菌,  一次性使用。        一致      项        目    产品  2  颗粒栓塞剂    产品  1  栓塞剂    对比说明    制造材料    明胶、甲醛    明胶、甲醛、氢氧化钠、石蜡、  吐温  80  增  加  加

生物相容性与组织相容性有什么区别⑴金属腐蚀生物体内的腐蚀性环境:⑴含盐zhidao的溶液是极好的电解质,促进了电化学腐蚀和水解;⑵组织中存在具有催化或迅速破坏外来成分能力的多种分子和细胞。将对生物金属材料产生腐蚀。对于生物材料而言多为局部腐蚀,具体包括应力腐蚀开裂、点腐蚀、晶间腐蚀、腐蚀疲劳以及缝隙腐蚀等,导致生物材料整体破坏。虽然金属材料在专生物体内保持惰性状态,但仍然可能会有物质溶入生物组织中,并对生物体组织产生毒性反应,造成组织的损害。如不锈钢中溶出的Cr+6生物组织的毒性。⑵聚合物降解聚合物在长期使用过程中,由于受到氧、热、紫外线、机械、水蒸气、酸碱及微生物等因素作用,逐渐失去弹性,出现裂纹,变硬、变脆或变软、发粘、变色等,从而使它的物理机械性能越来越差的现象。聚合物老化易形成的碎片、颗粒、小分子量单体物质,因此使用它时必须谨慎,对耐久性器件,必须保持一定强度和其它机械性能,老化产物不能对周围组织有毒害作用。例如,医用缝合线降解时会产生酸性物质,如果量少,很容易被人体中的化学物质中和,如果老化产物较大,则会对周围组织产生损害。属 本回答被网友采纳

钛是20世纪50年代发展起来的一种重要的结构金属,钛合金强度高、耐蚀性好、耐热性高。20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金。特性:1、首先肯定是钛靶可以做出很多种颜色,比如钛灰色,枪灰色,黑色,仿金色,咖啡色,蓝色,紫色等等还有很多。2、其次钛附着力很好,对于陶瓷和玻璃基片也具有非常好的附着力,所以钛可用于附着力较差膜材的底膜材料。钛也可用作薄膜电阻或薄膜电容器的制作材料。3、钛对活性气体的吸附性很强,蒸发在汞壁上的新鲜Ti膜形成一个高吸附能力的表面,有着优异的吸气性能,几乎能和除惰性气体以外的所有气体发生化学反应。这一性质使得Ti在超高真空抽气系统中作为吸气剂而得到广泛的应用,如用在钛升华泵、溅射离子泵中等。4、耐腐蚀性能,钛是一种非常活泼的金属,其平衡电位很低,在介质中的热力学腐蚀倾向大。但实际上钛在许多介质中很稳定,如钛在氧化性、中性和弱还原性等介质中是耐腐蚀的。扩展资料:钛合金是以钛为基础加入其他元素组成的合金。钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。氧、氮、碳和氢是钛合金的主要杂质。氧和氮e68a84e8a2ade79fa5e9819331333431343061在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在 0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。但钛对具有还原性氧及铬盐介质的抗蚀性差。参考资料来源:百度百科——钛合金

生物材料表面物理化学性质是影响其生物相容性的直接因素还是间接因素 第2张

钛是20世纪50年代发展起来的一种重要的结构金属,钛合金强度高、耐蚀性好、耐热性高。20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金。70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件发展历史钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到钛合金材料的重要性,相继对其进行研究开发,并得到了实际应用。第一个实用的钛合金是1954年美国研制成功的Ti-6Al-4V合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,而成为钛合金工业中的王牌合金,该合金使用量已占全部钛合金的75%~85%。其他许多钛合金都可以看作是Ti-6Al-4V合金的改型。20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。耐热钛合金的使用温度已从50年代的400℃提高到90年代的600~650℃。A2(Ti3Al)和r(TiAl)基合金的出现,使钛在发动机的使用部位正由发动机的冷端(风扇和压气机)向发动机的热端(涡轮)方向推进。结构钛合金向高强、高塑、高强高韧、高模量和高损伤容限方向发展。另外,20世纪70年代以来,还出现了Ti-Ni、Ti-Ni-Fe、Ti-Ni-Nb等形状记忆合金,并在工程上获得日益广泛的应用。世界上已研制出的钛合金有数百种,最著名的合金有20~30种,如Ti-6Al-4V、Ti-5Al-2.5Sn、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni、Ti-Pd、SP-700、Ti-6242、Ti-10-5-3、Ti-1023、BT9、BT20、IMI829、IMI834等[2,4]。据相关统计数据,2012年我国化工行业用钛量达2.5万吨,比2011年有所减少。这是自2009年以来,我国化工用钛市场首次出现负增长。近些年来,化工行业一直是钛加工材最大的用户,其用量在钛材总用量的占比一直保持在50%以上,2011年占比高达55%。但随着经济陷入低迷期,化工行业不但新建项目明显减少,同时还将面临产业结构调整,部分产品新建产能受到控制,落后产能也将逐步淘汰的境地。受此影响,其对钛加工材用量的萎缩也变得顺理成章。在此之前,便有业内人士预测化工行业用钛量在2013~2015年间达到峰值。以当前市场表现看来,2012年整体经济的疲软有可能使得化工用钛的衰退期提前。原理钛合金是以钛为基础加入其他元素组成的合金。钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。合金元素根据它们对相变温度的影响可分为三类:①稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。②稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。③对相变温度影响不大的元素为中性元素,有锆、锡等。氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在 0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。性能钛是一种新型金属,钛的性能与所含碳、氮、氢、氧等杂质含量有关,最纯的碘化钛杂质含量不超过0.1%,但其强度低、塑性高。99.5%工业纯钛的性能为:密度ρ=4.5g/立方厘米,熔点为1725℃,导热系数λ=15.24W/(m.K),抗拉强度σb=539MPa,伸长率δ=25%,断面收缩率ψ=25%,弹性模量E=1.078×105MPa,硬度HB195。强度高钛合金的密度一般在4.51g/立方厘米左右,仅为钢的60%,纯钛的密度才接近普通钢的密度,一些高强度钛合金超过了许多合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料,见表7-1,可制出单位强度高、刚性好、质轻的零部件。飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。热强度高使用温度比铝合金高几百度,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。钛合金的工作温度可达500℃,铝合金则在200℃以下。抗蚀性好钛合金在潮湿的大气和海水介质中工作,其抗蚀性远优于不锈钢;对点蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。但钛对具有还原性氧及铬盐介质的抗蚀性差。低温性能好钛合金在低温和超低温下,仍能保持其力学性能。低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。因此,钛合金也是一种重要的低温结构材料。化学活性大钛的化学活性大,与大气中O、N、H钛合金制品、CO、CO2、水蒸气、氨气等产生强烈的化学反应。含碳量大于0.2%时,会在钛合金中形成硬质TiC;温度较高时,与N作用也会形成TiN硬质表层;在600℃以上时,钛吸收氧形成硬度很高的硬化层;氢含量上升,也会形成脆化层。吸收气体而产生的硬脆表层深度可达0.1~0.15 mm,硬化程度为20%~30%。钛的化学亲和性也大,易与摩擦表面产生粘附现象。导热弹性小钛的导热系数λ=15.24W/(m.K)约为镍的1/4,铁的1/5,铝的1/14,而各种钛合金的导热系数比钛的导热系数约下降50%。钛合金的弹性模量约为钢的1/2,故其刚性差、易变形,不宜制作细长杆和薄壁件,切削时加工表面的回弹量很大,约为不锈钢的2~3倍,造成刀具后刀面的剧烈摩擦、粘附、粘结磨损。分类STAN钛制品钛是同素异构体,熔点为1668℃,在低于882℃时呈密排六方晶格结构,称为α钛;在882℃以上呈体心立方晶格结构,称为β钛。利用钛的上述两种结构的不同特点,添加适当的合金元素,使其相变温度及相分含量逐渐改变而得到不同组织的钛合金(titanium alloys)。室温下,钛合金有三种基体组织,钛合金也就分为以下三类:α合金,(α+β)合金和β合金。中国分别以TA、TC、TB表示。α钛合金它是α相固溶体组成的单相合金,不论是在一般温度下还是在较高的实际应用温度下,均是α相,组织稳定,耐磨性高于纯钛,抗氧化能力强。在500℃~600℃的温度下,仍保持其强度和抗蠕变性能,但不能进行热处理强化,室温强度不高。β钛合金它是β相固溶体组成的单相合金,未热处理即具有较高的强度,淬火、时效后合金得到进一步强化,室温强度可达1372~1666 MPa;但热稳定性较差,不宜在高温下使用。α+β钛合金它是双相合金,具有良好的综合性能,组织稳定性好,有良好的韧性、塑性和高温变形性能,能较好地进行热压力加工,能进行淬火、时效使合金强化。热处理后的强度约比退火状态提高50%~100%;高温强度高,可在400℃~500℃的温度下长期工作,其热稳定性次于α钛合金。三种钛合金中最常用的是α钛合金和α+β钛合金;α钛合金的切削加工性最好,α+β钛合金次之,β钛合金最差。α钛合金代号为TA,β钛合金代号为TB,α+β钛合金代号为TC。钛合金按用途可分为耐热合金、高强合金、耐蚀合金(钛-钼,钛-钯合金等)、低温合金以及特殊功能合金(钛-铁贮氢材料和钛-镍记忆合金)等。典型合金的成分和性能见表。热处理 钛合金通过调整热处理工艺可以获得不同的相组成和组织。一般认为细小等轴组织具有较好的塑性、热稳定性和疲劳强度;针状组织具有较高的持久强度、蠕变强度和断裂韧性;等轴和针状混合组织具有较好的综合性能。用途钛合金具有强度高而密度又小,机械性能好,韧性和抗蚀性能很好。另外,钛合金的工艺性能差,切削加工困难,在热加工中,非常容易吸收氢氧氮碳等杂质。还有抗磨性差,生产工艺复杂。钛的工业化生产是1948年开始的。航空工业发展的需要,使钛工业以平均每年约 8%的增长速度发展。世界钛合金加工材年产量已达4万余吨,钛合金牌号近30种。使用最广泛的钛合金是Ti-6Al-4V(TC4),Ti-5Al-2.5Sn(TA7)和工业纯钛(TA1、TA2和TA3)。钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。60年代中期,钛及其合金已在一般工业中应用,用于制作电解工业的电极,发电站的冷凝器,石油精炼和海水淡化的加热器以及环境污染控制装置等。钛及其合金已成为一种耐蚀结构材料。此外还用于生产贮氢材料和形状记忆合金等。中国于1956年开始钛和钛合金研究;60年代中期开始钛材的工业化生产并研制成TB2合金。钛合金是航空航天工业中使用的一种新的重要结构材料,比重、强度和使用温度介于铝和钢之间,但比铝、钢强度高并具有优异的抗海水腐蚀性能和超低温性能。1950年美国首次在F-84战斗轰炸机上用作后机身隔热板、导风罩、机尾罩等非承力构件。60年代开始钛合金的使用部位从后机身移向中机身、部分地代替结构钢制造隔框、梁、襟翼滑轨等重要承力构件。钛合金在军用飞机中的用量迅速增加,达到飞机结构重量的20%~25%。70年代起,民用机开始大量使用钛合金,如波音747客机用钛量达3640公斤以上。马赫数大于 2.5的飞机用钛主要是为了代替钢,以减轻结构重量。又如,美国SR-71 高空高速侦察机(飞行马赫数为3,飞行高度26212米),钛占飞机结构重量的93%,号称“全钛”飞机。当航空发动机的推重比从4~6提高到8~10,压气机出口温度相应地从200~300°C增加到500~600°C时,原来用铝制造的低压压气机盘和叶片就必须改用钛合金,或用钛合金代替不锈钢制造高压压气机盘和叶片,以减轻结构重量。70年代,钛合金在航空发动机中的用量一般占结构总重量的20%~30%,主要用于制造压气机部件,如锻造钛风扇、压气机盘和叶片、铸钛压气机机匣、中介机匣、轴承壳体等。航天器主要利用钛合金的高比强度,耐腐蚀和耐低温性能来制造各种压力容器、燃料贮箱、紧固件、仪器绑带、构架和火箭壳体。人造地球卫星、登月舱、载人飞船和航天飞机 也都使用钛合金板材焊接件。热处理常用的热处理方法有退火、固溶和时效处理。退火是为了消除内应力、提高塑性和组织稳定性,以获得较好的综合性能。通常α合金和(α+β)合金退火温度选在(α+β)─→β相转变点以下120~200℃;固溶和时效处理是从高温区快冷,以得到马氏体α′相和亚稳定的β相,然后在中温区保温使这些亚稳定相分解,得到α相或化合物等细小弥散的第二相质点,达到使合金强化的目的。通常(α+β)合金的淬火在(α+β)─→β相转变点以下40~100℃进行,亚稳定β合金淬火在(α+β)─→β相转变点以上40~80℃进行。时效处理温度一般为450~550℃。总结,钛合金的热处理工艺可以归纳为:(1)消除应力退火:目的是为消除或减少加工过程中产生的残余应力。防止在一些腐蚀环境中的化学侵蚀和减少变形。(2)完全退火:目的是为了获得好的韧性,改善加工性能,有利于再加工以及提高尺寸和组织的稳定性。(3)固溶处理和时效:目的是为了提高其强度,α钛合金和稳定的β钛合金不能进行强化热处理,在生产中只进行退火。α+β钛合金和含有少量α相的亚稳β钛合金可以通过固溶处理和时效使合金进一步强化。此外,为了满足工件的特殊要求,工业上还采用双重退火、等温退火、β热处理、形变热处理等金属热处理工艺。切削切削特点钛合金的硬度大于HB350时切削加工特别困难,小于HB300时则容易出现粘刀现象,也难于切削。但钛合金的硬度只是难于切削加工的一个方面,关键在于钛合金本身化学、物理、力学性能间的综合对其切削加工性的影响。钛合金有如下切削特点:(1)变形系数小:这是钛合金切削加工的显著特点,变形系数小于或接近于1。切屑在前刀面上滑动摩擦的路程大大增大,加速刀具磨损。(2)切削温度高:由于钛合金的导热系数很小(只相当于45号钢的1/5~1/7),切屑与前刀面的接触长度极短,切削时产生的热不易传出,集中在切削区和切削刃附近的较小范围内,切削温度很高。在相同的切削条件下,切削温度可比切削45号钢时高出一倍以上。(3)单位面积上的切削力大:主切削力比切钢时约小20%,由于切屑与前刀面的接触长度极短,单位接触面积上的切削力大大增加,容易造成崩刃。同时,由于钛合金的弹性模量小,加工时在径向力作用下容易产生弯曲变形,引起振动,加大刀具磨损并影响零件的精度。因此,要求工艺系统应具有较好的刚性。(4)冷硬现象严重:由于钛的化学活性大,在高的切削温度下,很容易吸收空气中的氧和氮形成硬而脆的外皮;同时切削过程中的塑性变形也会造成表面硬化。冷硬现象不仅会降低零件的疲劳强度,而且能加剧刀具磨损,是切削钛合金时的一个很重要特点。(5)刀具易磨损:毛坯经过冲压、锻造、热轧等方法加工后,形成硬而脆的不均匀外皮,极易造成崩刃现象,使得切除硬皮成为钛合金加工中最困难的工序。另外,由于钛合金对刀具材料的化学亲和性强,在切削温度高和单位面积上切削力大的条件下,刀具很容易产生粘结磨损。车削钛合金时,有时前刀面的磨损甚至比后刀面更为严重;进给量f<0.1 mm/r时,磨损主要发生在后刀面上;当f>0.2 mm/r时,前刀面将出现磨损;用硬质合金刀具精车和半精车时,后刀面的磨损以VBmax<0.4 mm较合适。在铣削加工中,由于钛合金材料的导热系数低,而且切屑与前刀面的接触长度极短,切削时产生的热不易传出,集中在切削变形区和切削刃附近的较小范围内,加工时切削刃刃口处会产生极高的切削温度,将大大缩短刀具寿命。对于钛合金Ti6Al4V来说,在刀具强度和机床功率允许的条件下,切削温度的高低是影响刀具寿命的关键因素,而并非切削力的大小。刀具材料切削加工钛合金应从降低切削温度和减少粘结两方面出发,选用红硬性好、抗弯强度高、导热性能好、与钛合金亲和性差的刀具材料,YG类硬质合金比较合适。由于高速钢的耐热性差,因此应尽量采用硬质合金制作的刀具。常用的硬质合金刀具材料有YG8、YG3、YG6X、YG6A、813、643、YS2T和YD15等。涂层刀片和YT类硬质合金会与钛合金产生剧烈的亲和作用,加剧刀具的粘结磨损,不宜用来切削钛合金;对于复杂、多刃刀具,可选用高钒高速钢(如W12Cr4V4Mo)、高钴高速钢(如W2Mo9Cr4VCo8)或铝高速钢(如W6Mo5Cr4V2Al、M10Mo4Cr4V3Al)等刀具材料,适于制作切削钛合金的钻头、铰刀、立铣刀、拉刀、丝锥等刀具。采用金刚石和立方氮化硼作刀具切削钛合金,可取得显著效果。如用天然金刚石刀具在乳化液冷却的条件下,切削速度可达200 m/min;若不用切削液,在同等磨损量时,允许的切削速度仅为100m/min。注意事项在切削钛合金的过程中,应注意的事项有:(1)由于钛合金的弹性模量小,工件在加工中的夹紧变形和受力变形大,会降低工件的加工精度;工件安装时夹紧力不宜过大,必要时可增加辅助支承。(2)如果使用含氢的切削液,切削过程中在高温下将分解释放出氢气,被钛吸收引起氢脆;也可能引起钛合金高温应力腐蚀开裂。(3)切削液中的氯化物使用时还可能分解或挥发有毒气体,使用时宜采取安全防护措施,否则不应使用;切削后应及时用不含氯的清洗剂彻底清洗零件,清除含氯残留物。(4)禁止使用铅或锌基合金制作的工、夹具与钛合金接触,铜、锡、镉及其合金也同样禁止使用。(5)与钛合金接触的所有工、夹具或其他装置都必须洁净;经清洗过的钛合金零件,要防止油脂或指印污染,否则以后可能造成盐(氯化钠)的应力腐蚀。(6)一般情况下切削加工钛合金时,没有发火危险,只有在微量切削时,切下的细小切屑才有发火燃烧现象。为了避免火灾,除大量浇注切削液之外,还应防止切屑在机床上堆积,刀具用钝后立即进行更换,或降低切削速度,加大进给量以加大切屑厚度。若一旦着火,应采用滑石粉、石灰石粉末、干砂等灭火器材进行扑灭,严禁使用四氯化碳、二氧化碳灭火器,也不能浇水,因为水能加速燃烧,甚至导致氢爆炸。脱氧化及酸洗在热处理中间及热处理之后大多要求进行表面处理,以便去除金属表面氧化皮及各种污染物,减少金属裸餺表面的活性,以及在钛及其合金表卤涂敷保护层及各种功能涂层之前和涂敷过程中也要进行表面处理,涂敷这种涂层的是改善金属表面的性能,例如,防止腐蚀、氧化及磨损等。钛及其合金的酸洗条件决定于氧化层及现存反应层的种类(特征),而这种层的种类又受到高温加热过程及加工过程温度增高(例如,锻造、铸造、焊接等)的影响。在较低的加工温度或者大约在600X:以下的髙温加热温度条件下仅仅生成薄的氧化层,高温条件下对着某种氧化层附近形成一种富氧扩散区,也必须通过酸洗脱除这个富氧扩散层。可以采用各种不同的脱除氧化皮方法:脱除厚氧化层及硬表面层的机械方法,在熔融盐浴中脱除氧化皮以及在酸溶液中进行酸洗脱除氧化皮的方法。在很多种情况下可以采用若干方法相结合的方法,例如,先机械方式脱除氧化皮及接着进行酸洗相结合,或者先盐浴及接着进行酸洗相结合的脱除氧化皮方法^遇到在较高的温度下形成的氧化层及扩散层的情况下要采用特殊的方法但是在高温加热到600X:的情况下形成的氧化层大多通过一般的酸洗就可将其溶解掉。存在的问题钛合金具有质量轻、比强度高、耐腐蚀性好等优点,故被广泛应用在汽车工业中,应用钛合金最多的是汽车发动机系统。利用钛合金制造发动机零件有很多好处。 [1] 钛合金的密度低,可以降低运动零件的惯性质量,同时钛气门弹簧可以增加自由振动,减弱车身的振颤,提高发动机的转速及输出功率。减小运动零件的惯性质量,从而使摩擦力减小,提高发动机的燃油效率。选择钛合金可以减轻相关零件的负载应力,缩小零件的尺寸,从而使发动机及整车的质量减轻。零部件惯性质量的降低,使得振动和噪声减弱,改善发动机的性能。 钛合金在其他部件上的应用可提高人员的舒适度和汽车的美观等。在汽车工业上的应用,钛合金在节能降耗方面起到了不可估量的作用。钛合金零部件尽管具有如此优越的性能,但距钛及其合金普遍应用在汽车工业中还有很大的距离,原因包括价格昂贵、成形性不好及焊接性能差等问题。阻碍钛合金普遍应用于汽车工业的最主要原因还是成本过高。无论是金属最初的冶炼还是后续的加工,钛合金的价格都远远高于其他金属。汽车工业能够接受的钛制零件成本,用连杆钛材8~13美元/kg,气阀用钛材13~20美元/kg,弹簧、发动机排气系统及紧固件用钛材希望在8美元/kg以下。是铝板材的6~15倍,钢板材的45~83倍。缺点钛及钛合金主要限制是在高温与其它材料的化学反应性差。此性质迫使钛合金与一般传统的精炼、熔融和铸造技术不同,甚至经常造成模具的损坏;结果,使的钛合金的价格变的十分昂贵。因此它们刚开始大多用在飞机结构、航空器,以及用在石油和化学工业等高科技工业。不过由于太空科技的发达、人民生活质量的提升,所以钛合金也渐渐地用来制成民生用品,造福人民的生活,只是这些产品价格仍然偏高,多属于高价位的产品,这是钛合金无法发扬光大的最大的致命伤。新进展各国都在开发低成本和高性能的新型钛合金,努力使钛合金进入具有巨大市场潜力的民用工业领域。国内外钛合金材料的研究新进展主要体现在以下几方面。高温钛合金世界上第一个研制成功的高温钛合金是Ti-6Al-4V,使用温度为300-350℃。随后相继研制出使用温度达400℃的IMI550、BT3-1等合金,以及使用温度为450~500℃的IMI679、IMI685、Ti-6246、Ti-6242等合金。已成功地应用在军用和民用飞机发动机中的新型高温钛合金有.英国的IMI829、IMI834合金;美国的Ti-1100合金;俄罗斯的BT18Y、BT36合金等。表7为部分国家新型高温钛合金的最高使用温度。近几年国外把采用快速凝固/粉末冶金技术、纤维或颗粒增强复合材料研制钛合金作为高温钛合金的发展方向,使钛合金的使用温度可提高到650℃以上[1,27,29,31]。美国麦道公司采用快速凝固/粉末冶金技术成功地研制出一种高纯度、高致密性钛合金,在760℃下其强度相当于室温下使用的钛合金强度。钛铝化合物与一般钛合金相比,钛铝化合物为基钠Ti3Al(α2)和TiAl(γ)金属间化合物的最大优点是高温性能好(最高使用温度分别为816和982℃)、抗氧化能力强、抗蠕变性能好和重量轻(密度仅为镍基高温合金的1/2),这些优点使其成为未来航空发动机及飞机结构件最具竞争力的材料。已有两个Ti3Al为基的钛合金Ti-21Nb-14Al和Ti-24Al-14Nb-#v-0.5Mo在美国开始批量生产。其他发展的Ti3Al为基的钛合金有Ti-24Al-11Nb、Ti25Al-17Nb-1Mo和Ti-25Al-10Nb-3V-1Mo等[29]。TiAl(γ)为基的钛合金受关注的成分范围为Ti-(46-52)Al-(1-10)M(at.%),此处M为v、Cr、Mn、Nb、Mn、Mo和W中的至少一种元素。TiAl3为基的钛合金开始引起注意,如Ti-65Al-10Ni合金。医用钛合金钛无毒、质轻、强度高且具有优良的生物相容性,是非常理想的医用金属材料,可用作植入人体的植入物等。在医学领域中广泛使用的仍是Ti-6Al-4v ELI合金。但后者会析出极微量的钒和铝离子,降低了其细胞适应性且有可能对636f7079e79fa5e9819331333431363634人体造成危害,这一问题早已引起医学界的广泛关注。美国早在20世纪80年代中期便开始研制无铝、无钒、具有生物相容性的钛合金,将其用于矫形术。日本、英国等也在该方面做了大量的研究工作,并取得一些新的进展。例如,日本已开发出一系列具有优良生物相容性的α+β钛合金,包括Ti-15Zr-4Nb_4ta-0.2Pd、Ti-15Zr-4Nb-aTa-0.2Pd-0.20~0.05N、Ti-15Sn-4Nb-2Ta-0.2Pd和Ti-15Sn-4nb-2Ta-0.2Pd-0.20,这些合金的腐蚀强度、疲劳强度和抗腐蚀性能均优于Ti-6Al-4v ELI。与α+β钛合金相比,β钛合金具有更高的强度水平,以及更好的切口性能和韧性,更适于作为植入物植入人体。在美国,已有5种β钛合金被推荐至医学领域,即TMZFTM(TI-12Mo-^Zr-2Fe)、Ti-13Nb-13Zr、Timetal 21SRx(TI-15Mo-2.5Nb-0.2Si)、Tiadyne 1610(Ti-16Nb-9.5Hf)和Ti-15Mo。估计在不久的将来,此类具有高强度、低弹性模量以及优异成形性和抗腐蚀性能的庐钛合金很有可能取代医学领域中广泛使用的Ti-6Al-4V ELI合金

钛合金是以钛为基础加入其他元素组成的合金。钛合金的特性:1、强度高钛合金的密度一般在4.51g/立方厘米左右, 钛合金仅为钢的60%,纯钛的密度才接近普通钢的密度,一些高强度钛合金超过了许多 合金结构钢的强度。因此钛合金的比强度(强度/密度)远大于其他金属结构材料,见表7-1,可制出单位强度高、刚性好、质轻的零部件。飞机的发动机构件、骨架、蒙皮、紧固件及起落架等都使用钛合金。2、热强度高使用温度比 铝合金高几百度,在中等温度下仍能保持所要求的强度,可在450~500℃的温度下长期工作这两类钛合金在150℃~500℃范围内仍有很高的比强度,而铝合金在150℃时比强度明显下降。钛合金的工作温度可达500℃,铝合金则在200℃以下。3、抗蚀性好钛合金在潮湿的 大气和海水介质中工作,其抗蚀性远优于不锈钢;对点7a64e59b9ee7ad9431333363373738蚀、酸蚀、应力腐蚀的抵抗力特别强;对碱、氯化物、氯的有机物品、硝酸、硫酸等有优良的抗腐蚀能力。但钛对具有还原性氧及铬盐介质的抗蚀性差。4、低温性能好钛合金在低温和超低温下,仍能保持其 力学性能。低温性能好,间隙元素极低的钛合金,如TA7,在-253℃下还能保持一定的塑性。因此,钛合金也是一种重要的低温 结构材料。5、化学活性大钛的化学活性大,与大气中O、N、H 钛合金、CO、CO2、水蒸气、氨气等产生强烈的化学反应。含碳量大于0.2%时,会在钛合金中形成硬质TiC;温度较高时,与N作用也会形成TiN硬质表层;在600℃以上时,钛吸收氧形成硬度很高的硬化层;氢含量上升,也会形成脆化层。吸收气体而产生的硬脆表层深度可达0.1~0.15 mm,硬化程度为20%~30%。钛的化学亲和性也大,易与摩擦表面产生粘附现象。6、导热弹性小钛的导热系数λ=15.24W/(m.K)约为镍的1/4,铁的1/5,铝的1/14,而各种钛合金的导热系数比钛的导热系数约下降50%。钛合金的弹性模量约为钢的1/2,故其刚性差、易变形,不宜制作细长杆和薄壁件,切削时加工表面的回弹量很大,约为不锈钢的2~3倍,造成 刀具后刀面的剧烈摩擦、粘附、粘结磨损。原理:钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。合金元素根据它们对相变温度的影响可分为三类:1、稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性模量有明显效果。2、稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。3、对相变温度影响不大的元素为中性元素,有锆、锡等。氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在 0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。用途:钛合金主要用于制作飞机发动机压气机部件,其次为火箭、导弹和高速飞机的结构件。60年代中期,钛及其合金已在一般工业中应用,用于制作电解工业的电极,发电站的 冷凝器,石油精炼和海水淡化的加热器以及 环境污染控制装置等。钛及其合金已成为一种耐蚀结构材料。此外还用于生产 贮氢材料和 形状记忆合金等。

钛合金是以钛为基础加入其他元素zd组成的合金。钛有两种同质异晶体:882℃以下为密排六方结构α钛,882℃以上为体心立方的β钛。合金元素根据它们对相变温度的影响可分为三类:①稳定α相、提高相转变温度的元素为α稳定元素,有铝、碳、氧和氮等。其中铝是钛合金主要合金元素,它对提高合金的常温和高温强度、降低比重、增加弹性回模量有明显效果。②稳定β相、降低相变温度的元素为β稳定元素,又可分同晶型和共析型二种。前者有钼、铌、钒等;后者有铬、锰、铜、铁、硅等。③对相变温度影响不大的元素为中性元素,有锆、锡等。氧、氮、碳和氢是钛合金的主要杂质。氧和氮在α相中有较大的溶解度,对钛合金有显著强化效果,但却使塑性下降。通常规定钛中氧和氮的含量分别在0.15~0.2%和0.04~0.05%以下。氢在α相中溶解度很小,钛合金中溶解过多答的氢会产生氢化物,使合金变脆。通常钛合金中氢含量控制在0.015%以下。氢在钛中的溶解是可逆的,可以用真空退火除去。 本回答被网友采纳

钛是20世纪50年代发展起来的一种重要的结构金属,钛合金因具有比强度高、耐蚀性好、耐热性高等特点而被广泛用于各个领域。世界上许多国家都认识到锨合金材料的重要性,相继对其进行研究开发,并得到了实际应用。 第一个实用的钛合金是1954年美国研制成功的Ti-6Al-4V合金,由于它的耐热性、强度、塑性、韧性、成形性、可焊性、耐蚀性和生物相容性均较好,而成为钛合金工业中的王牌合金,该合金使用量已占全部钛合金的75%~85%。其他许多钛合金都可以看做是Ti-6Al-4V合金的改型。 20世纪50~60年代,主要是发展航空发动机用的高温钛合金和机体用的结构钛合金,70年代开发出一批耐蚀钛合金,80年代以来,耐蚀钛合金和高强钛合金得到进一步发展。耐热钛合金的使用温度已从50年代的400℃提高到90年代的600~650℃。A2(Ti3Al)和r(TiAl)基合金的出现,使钛在发动机的使用部位正由发动机的冷端(风扇和压气机)向发动机的热端(涡轮)方向推进。结构钛合金向高强、高塑、高强高韧、高模量和高损伤容限方向发展。 另外,20世纪70年代以来,还出现了Ti-Ni、Ti-Ni-Fe、Ti-Ni-Nb等形状记忆合金,并在工程上获得日益广泛的应用。 目前,世界上已研制出的钛合金有数百种,最著名的合金有20~30种,如Ti-6Al-4V、Ti-5Al-2.5Sn、Ti-2Al-2.5Zr、Ti-32Mo、Ti-Mo-Ni、Ti-Pd、SP-700、Ti-6242、Ti-1023、Ti-10-5-3、Ti-1023、BT9、BT20、IMI829、IMI834等[2,4]。 钛合金可以分为α、α+β、β型合金及钛铝金属间化合物(TixAl,此处x=1)四类。 2. 钛合金的新进展 近年来,各国正在开发低成本和高性能的新型钛合金,努力使钛合金进入具有巨大市场潜力的民用工业领e69da5e6ba907a686964616f31333332633565域阳。国内外钛合金材料的研究新进展主要体现在以下几方面。 (1)高温钛合金。 世界上第一个研制成功的高温钛合金是Ti-6Al-4V,使用温度为300-350℃。随后相继研制出使用温度达400℃的IMI550、BT3-1等合金,以及使用温度为450~500℃的IMI679、IMI685、Ti-6246、Ti-6242等合金。目前已成功地应用在军用和民用飞机发动机中的新型高温钛合金有.英国的IMI829、IMI834合金;美国的Ti-1100合金;俄罗斯的BT18Y、BT36合金等。表7为部分国家新型高温钛合金的最高使用温度[26]。 近几年国外把采用快速凝固/粉末冶金技术、纤维或颗粒增强复合材料研制钛合金作为高温钛合金的发展方向,使钛合金的使用温度可提高到650℃以上[1,27,29,31]。美国麦道公司采用快速凝固/粉末冶金技术戚功地研制出一种高纯度、高致密性钛合金,在760℃下其强度相当于目前室温下使用的钛合金强度[26]。 (2)钛铝化合物为基的钛合金。 与一般钛合金相比,钛铝化合物为基钠Ti3Al(α2)和TiAl(γ)金属间化合物的最大优点是高温性能好(最高使用温度分别为816和982℃)、抗氧化能力强、抗蠕变性能好和重量轻(密度仅为镍基高温合金的1/2),这些优点使其成为未来航空发动机及飞机结构件最具竞争力的材料[26]。 目前,已有两个Ti3Al为基的钛合金Ti-21Nb-14Al和Ti-24Al-14Nb-#v-0.5Mo在美国开始批量生产。其他近年来发展的Ti3Al为基的钛合金有Ti-24Al-11Nb、Ti25Al-17Nb-1Mo和Ti-25Al-10Nb-3V-1Mo等[29]。TiAl(γ)为基的钛合金受关注的成分范围为Ti-(46-52)Al-(1-10)M(at.%),此处M为v、Cr、Mn、Nb、Mn、Mo和W中的至少一种元素。最近,TiAl3为基的钛合金开始引起注意,如Ti-65Al-10Ni合金[1]。 (3)高强高韧β型钛合金。 β型钛合金最早是20世纪50年代中期由美国Crucible公司研制出的B120VCA合金(Ti-13v-11Cr-3Al)。β型钛合金具有良好的冷热加工性能,易锻造,可轧制、焊接,可通过固溶-时效处理获得较高的机械性能、良好的环境抗力及强度与断裂韧性的很好配合。新型高强高韧β型钛合金最具代表性的有以下几种[26,30]: Ti1023(Ti-10v-2Fe-#al),该合金与飞机结构件中常用的30CrMnSiA高强度结构钢性能相当,具有优异的锻造性能; Ti153(Ti-15V-3Cr-3Al-3Sn),该合金冷加工性能比工业纯钛还好,时效后的室温抗拉强度可达1000MPa以上; β21S(Ti-15Mo-3Al-2.7Nb-0.2Si),该合金是由美国钛金属公司Timet分部研制的一种新型抗氧化、超高强钛合金,具有良好的抗氧化性能,冷热加工性能优良,可制成厚度为0.064mm的箔材; 日本钢管公司(NKK)研制成功的SP-700(Ti-4.5Al-3V-2Mo-2Fe)钛合金,该合金强度高,超塑性延伸率高达2000%,且超塑成形温度比Ti-6Al-4V低140℃,可取代Ti-6Al-4V合金用超塑成型-扩散连接(SPF/DB)技术制造各种航空航天构件; 俄罗斯研制出的BT-22(TI-5v-5Mo-1Cr-5Al),其抗拉强度可达1105MPA以上 (4)阻燃钛合金。常规钛合金在特定的条件下有燃烷的倾向,这在很大程度上限制了其应用。针对这种情况,各国都展开了对阻燃钛合金的研究并取得一定突破。羌国研制出的Alloy c(也称为Ti-1720),名义成分为50Ti-35v-15Cr(质量分数),是一种对持续燃烧不敏感的阻燃钛合金,己用于F119发动机。BTT-1和BTT-3为俄罗斯研制的阻燃钛合金,均为Ti-Cu-Al系合金,具有相当好的热变形工艺性能,可用其制成复杂的零件[26]。 (5)医用钛合金。 钛无毒、质轻、强度高且具有优良的生物相容性,是非常理想的医用金属材料,可用作植人人体的植人物等。目前,在医学领域中广泛使用的仍是Ti-6Al-4v ELI合金。但后者会析出极微量的钒和铝离子,降低了其细胞适应性且有可能对人体造成危害,这一问题早已引起医学界的广泛关注。羌国早在20世纪80年代中期便开始研制无铝、无钒、具有生物相容性的钛合金,将其用于矫形术。日本、英国等也在该方面做了大量的研究工作,并取得一些新的进展。例如,日本已开发出一系列具有优良生物相容性的α+β钛合金,包括Ti-15Zr-4Nb_4ta-0.2Pd、Ti-15Zr-4Nb-aTa-0.2Pd-0.20~0.05N、Ti-15Sn-4Nb-2Ta-0.2Pd和Ti-15Sn-4nb-2Ta-0.2Pd-0.20,这些合金的腐蚀强度、疲劳强度和抗腐蚀性能均优于Ti-6Al-4v ELI。与α+β钛合金相比,β钛合金具有更高的强度水乎,以及更好的切口性能和韧性,更适于作为植入物植入人体。在美国,已有5种β钛合金被推荐至医学领域,即TMZFTM(TI-12Mo-^Zr-2Fe)、Ti-13Nb-13Zr、Timetal 21SRx(TI-15Mo-2.5Nb-0.2Si)、Tiadyne 1610(Ti-16Nb-9.5Hf)和Ti-15Mo。估计在不久的将来,此类具有高强度、低弹性模量以及优异成形性和抗腐蚀性能的庐钛合金很有可能取代目前医学领域中广泛使用的Ti-6Al-4V ELI合金[28,32]。 本回答被网友采纳

生态因子对生物的生态作用 一.环境概述 二. 生态因子 1、定义:生态因子(ecological factors)是指环境中对生物生长、发育、生殖、行为和分布有直接或间接作用的环境要素。 2. 生态因子作用的一般特征(一般规律) (1)综合作用; (2)主导因子作用; (3)直接作用和间接作用; (4)阶段性作用; (5)可调节(补偿)作用但不可代替性; (6)限制性作用—耐度限制及耐度限制的调节。 限制因子(limiting factor): ①限制生物生存和繁殖的关键性因子。 ②在众多生态因子中,任何接近或超过某种生物的耐受性极限,而且阻止其生长、繁殖或扩散甚至生存的因素。 最小因素定律(law of minimum): 能够影响生物的无数因子中,总有一个因素限制生物的生长、生存或繁殖。 耐性定律(law of tolerance): 耐性(tolerance):①指生物能够忍受外界极端条件的能力;②指单个有机体或种群能够生存的某一生态因子的范围。 又称shelford 耐性定律。任何一个生态因子在数量或质量上的不足或过多,即当其接近或达到某种生物的耐受性限制时,而使该种生物衰退或不能生存。 2. 生态因子作用的一般特征(一般规律) 耐性限度(the limits of tolerance): 每个种只能在环境条件一定范围内生存和繁殖。也即生物种在其生存范围内,对任一生态因子的需求总有其上限与下限,两者之间的距离就是该种对该因子的耐性限度。 生物种的耐性曲线(见图例): 耐性限制用曲线表示,称为耐性曲线(tolerance curve)。广幅分布生物与狭幅分布生物分布耐性曲线。 耐度限制的调节通过下列主要方式: 新环境适应:驯化培育 休眠——“逃避”限制 生理节律变化e799bee5baa6e79fa5e98193e78988e69d8331333264623232和其他周期性补偿变化 调节的目的是对恶劣环境的克服,通过这些方式,使体内生理、行为达到平衡,而抵抗恶劣环境。 三.生态因子对生物的生态作用 三.生态因子对生物的生态作用 (1) 光强的作用:生长发育、形态建构作用。典型例子—植物黄化现象(eitiolation phenomenon)。 (2)光质的作用:光合作用影响 红、橙光能对叶绿素有促进,绿光不被植物吸收称“生理无效辐射”。红光有利于糖的合成,蓝光有利于蛋白质的合成。 光对动物生殖、体色变化、迁徙、毛羽更换、生长发育有影响。 紫外光与动物维生素D产生关系密切,过强有致死作用,波长360nm即开始有杀菌作用,在340nm~240nm的辐射条件下,可使细菌、真菌、线虫的卵和病毒等停止活动。200~300nm的辐射下,杀菌力强,能杀灭空气中、水面和各种物体边面的微生物,这对于抑制自然界的传染病病原体是极为重要的。 三.生态因子对生物的生态作用 (3)光周期现象—生物对光的生态反应与适应 定义:生物对昼夜光暗循环格局的反应所表现出的现象称之为光周期现象。 生物和许多周期现象是受日照长短控制的,光周期是生命活动的定时器和启动器。表1 不同纬度地区的日照时间 单位:h 三.生态因子对生物的生态作用 (3)光周期现象—生物对光的生态反应与适应 植物的光周期现象: 长日照植物、短日照植物、中日照植物、日照中植物。(不同光照时间对开花的作用而定) 动物的光周期现象: 鸟类的光周期现象最为明显,它的迁徙是由日照长短变化所引起的;鸟类及某些兽类的生殖也与日照长短有关,如雪貂、野兔和刺猬等都是随着春天日照长度增加而开始生殖(称为长日照兽类);绵羊、山羊和鹿等总随着秋天短日照的到来而进入生殖期(称短日照兽类)。 三.生态因子对生物的生态作用 (1)温度与生物生长发育 生长:“三基点”——最低、最适、最高温度。 发育:植物的春化作用(某些植物要经过一个“低温“阶段才能开花结果)。 (2)生物对极端温度的适应 对低温适应——在形态、生理和行为方面的表现 中国南北方几种兽类颅骨长度的比较: 三.生态因子对生物的生态作用 说明了生活在高纬度地区的恒温动物其身体往往比生活在低纬度地区的同类个体大。个体大的动物,其单位体重散热量相对减少(贝格曼Begman定律)(表)。 阿伦(Allen)规律:恒温动物身体的突出部分为四肢、尾巴、外身等在低温环境中有变小的趋势。 在生理方面,生活在低温环境中的植物通过减少细胞中的水分和增加细胞中的糖类、脂肪等物质来降低植物的冰点,增加抗寒能力。动物对低温的适应主要表现在代谢率与温度关系中的热中性区宽,下临界点温度以下的曲线率小等几个方面(图)。 (3)物候节律: 物候又称物候现象(phenological phenomenon),是指生物的生命活动对季节变化的反应现象。物候学(pheology)则是指研究生物与气候周期变化相互关系的科学。 三.生态因子对生物的生态作用 (1)水因子对生物生长发育的作用: 水分不足,使植物萎蔫;使动物滞育或休眠。某些动物的周期性繁殖与降水季节密切相关,如澳洲鹦鹉遇到干旱年份,就停止繁殖;而某些龙脑香科植物遇到干旱年份却产生“爆发性开花结果”。 (2)生物对水因子的适应三.生态因子对生物的生态作用 (2)生物对水因子的适应 植物依其对水分需求划分为水生植物、陆生植物两大类型。各类型下又分别划分为沉水植物、浮水植物、挺水植物、湿生植物、旱生植物和中生植物等。(图解) 陆生动物对水因子的适应 形态结构上的适应:以各种不同形态结构,使体内水分平衡。 行为上的适应:沙漠动物昼伏夜出;迁徙等。 生理上的适应:“沙漠之舟”骆驼可以17天喝水,身体脱水达体重的27%,仍然照常行走。它不仅具有贮水的胃,驼峰中还储藏丰富的脂肪,有消耗过程中产生大量水分;其血液中具有特殊的脂肪和蛋白质,不易脱水。 三.生态因子对生物的生态作用 (1)氧的生态作用; (2)氮的生态作用; (3)CO2的生态作用(对动植物个体潜在的影响); ①使植物气孔开度减少,减少蒸腾,提高水分利用。 ②CO2 浓度相对提高,使C3植物光合作用不断增加(C4植物达到饱和点后则不随CO2 浓度提高,光合作用增加)。 ③CO2 能促进植物的生长——植物生长速率随全球CO2 浓度的提高而增加。 ④高浓度的CO2 能改变植物形态结构——幼苗分枝增多,叶面积指数加大等。 三.生态因子对生物的生态作用 (4)大气污染与植物; ①大气主要污染物对植物的危害(影响) 二氧化硫(SO2 )对植物的影响:伤害阈值为0.25~0.55ppm,2~8小时;典型症状——叶片脉间呈不规则的点状、条状或块状坏死区。 氟化氢(HF)对植物的影响:伤害阈值>40ppm;典型症状——叶尖和叶缘坏死。 臭氧(O3)对植物的影响:伤害阈值0.05~0.15ppm 0.5~8小时;典型症状——叶面上出现密集的细小斑点。 乙烯对植物的影响:伤害阈值10~100ppb;典型症状——“偏上生长”致使叶片、花、果脱落。 ②植物对大气的净化作用 吸收CO2,放出O2 :造林绿化与人类维系呼吸; 吸收有毒气体:吸收二氧化硫(SO2 )及氟化氢(HF)最优; 驱菌杀菌作用:有些植物分泌杀菌素,如1ha松柏林24小时分泌34kg杀菌素; 阻滞粉尘:针叶林阻粉尘量32~34吨/年,阔叶林68吨/年; 吸收放射性物质:吸收中子γ-射线。 三.生态因子对生物的生态作用 (4)大气污染与植物; ③大气污染监测——指示植物 a.作为指示植物的基本条件: 能够综合反映大气污染对生态系统影响的强度; 能够较早地发现污染(对大气污染敏感); 能够同时检测多种大气污染物; 能够反映出一个地区的污染历史(基本年轮的化学分析)。 b.常见(用)的指示植物:地衣最敏感,0.015~0.105ppm二氧化硫下无法生存(但反应慢)。 ④大气污染的植物监测 形态及生长量观测:IA=Wo/Wm; 群落生活力调查(见《城市生态学》——孟德政等译,1986); 现场盆栽定点监测; 生理生化指标测定——光合作用,呼吸作用,气孔开放度,细胞膜透性,叶液PH值变化,植物体内酶体变化等。 三.生态因子对生物的生态作用 (1)土壤化学性质与植物的关系 ①PH值 <3 或 >9对根系严重伤害 ②矿质营养元素与植物 (2)植物的盐害和抗盐性 植物的抗盐方式: 排除盐分——泌盐植物; 稀盐植物(稀释盐分); 富集盐分; 拒绝吸收 (3)植物对土壤适应的生态类型 对PH值的适应——嗜酸性植物、嗜酸—耐碱植物、嗜碱—耐酸植物、嗜碱植物。 钙土植物、盐生植物、抗盐植物 (4)土壤污染的植物监测 土壤污染——重金属污染、如汞、镉、砷、化学农药污染等。 监测:植物群落调查,蔬菜及作物调查,实验分析