热力学第二定律

你确定是“系统的熵不会增加而不产生其他影响”而不是“系统的熵不会减小而不产生其他影响”吗 热力学的很多公式都是从统计热力学推过来的,包括理想气体的所有公式。咱说说统计热力学。 统计热力学从熵下手,放之四海而皆准而且最重要的公式(没有之一)就是S=k*lnΩ。其中S是熵,k是波尔兹曼常数=1.3807e-23J/K,Ω是系统可能的状态个数。 然后就提出了很多模型,最简单的一个就是假设系统中每个分子都有两个能级,基态和激发态,基态能量0,激发态能量ε。如果有5个分子,1个是激发的,那可能是5个分子中的任意一个处于e68a84e799bee5baa631333236613339激发态,Ω=5。比如现在有N个分子,其中有M个是激发的。用排列组合算一下,Ω=N!/M!/(N-M)!。S=k*ln(N!/(M!*(N-M)!))。系统的内能是M个激发*激发能ε=M*ε。 我觉得我需要长篇大论了。。。还不一定说得清楚 如果现在有两坨东西,每坨都是N个分子,但是激发态的分子数不一样,分别是M1和M2。如果他们都是一样的分子那比热也就一样,说起来还简单一些。 热力学第一定律说的是内能是守恒的,也就是那个M1+M2是守恒的。热力学第二定律说的是M1和M2会趋于平均。我们来算一下M1和M2是平均的时候熵大还是不平均的时候熵大。(结论当然是平均的时候熵大)证明太麻烦,代进两个数试试得了。假设N=10,M1=4,M2=2,这时候S=k*ln(10!/(4!*6!))+k*ln(10!/(2!*8!))=9.15*k。如果M1=3,M2=3,再算一遍熵S=k*ln(10!/(3!*7!))+k*ln(10!/(3!*7!))=9.57*k。发现热平衡的时候熵大了。 至于熵和温度的关系。温度的定义是1/T=∂S/∂U。U=M*ε,所以1/T=(∂S/∂M)/ε。用泰勒展开留第一项,可以认为ln(x!)=x*ln(x)-x。所以1/T=k*ln((N-M)/M)/ε。你会发现M<N/2的时候M增大,T也增大熵也增大。 需要说明的是M不能大于N/2,也就是激发态不能大于基态。如果激发态数目大于基态数目,这种状态叫粒子反转。如果你学过激光原理的话就知道这是产生激光的四大条件之一,在正常条件下是不会发生的。粒子反转情况下温度是负的,负开尔文温度是高于正无穷开尔文温度的。 我说了好多。如果你是初中生那我就无语了 本回答被提问者和网友采纳

热力学第二定律,说的是熵增原理,说自然界的热力学运动,只会自发的向着熵增的方向进行啊。 用反证法,从单一热源吸热,熵减小所以,你用公式把上面两个关系表述出来就行了!

[编辑本段](1)概述 ①热不可能自发地、不付代价地从低温物体e79fa5e98193e58685e5aeb931333236613338传到高温物体。(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的) ②不可能从单一热源取热,把它全部变为功而不产生其他任何影响(这是从能量消耗的角度说的,它说明第二类永动机是不可能实现的。)[编辑本段](2)说明 ①热力学第二定律是热力学的基本定律之一。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。 上述(1)中①的讲法是克劳修斯(Clausius)在1850年提出的。②的讲法是开尔文于1851年提出的。这些表述都是等效的。 在①的讲法中,指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。 在②的讲法中指出,自然界中任何形式的能都会很容易地变成热,而反过来热却不能在不产生其他影响的条件下完全变成其他形式的能,从而说明了这种转变在自然条件下也是不可逆的。热机能连续不断地将热变为机械功,一定伴随有热量的损失。第二定律和第一定律不同,第一定律否定了创造能量和消灭能量的可能性,第二定律阐明了过程进行的方向性,否定了以特殊方式利用能量的可能性。 . ②人们曾设想制造一种能从单一热源取热,使之完全变为有用功而不产生其他影响的机器,这种空想出来的热机叫第二类永动机。它并不违反热力学第一定律,但却违反热力学第二定律。有人曾计算过,地球表面有10亿立方千米的海水,以海水作单一热源,若把海水的温度哪怕只降低O.25度,放出热量,将能变成一千万亿度的电能足够全世界使用一千年。但只用海洋做为单一热源的热机是违反上述第二种讲法的,因此要想制造出热效率为百分之百的热机是绝对不可能的。 ③从分子运动论的观点看,作功是大量分子的有规则运动,而热运动则是大量分子的无规则运动。显然无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。一个不受外界影响的孤立系统,其内部自发的过程总是由几率小的状态向几率大的状态进行,从此可见热是不可能自发地变成功的。 ④热力学第二定律只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。而不适用于少量的微观体系,也不能把它推广到无限的宇宙。 ⑤根据热力学第零定律,确定了态函数——温度; 根据热力学第一定律,确定了态函数——内能和焓; 根据热力学第二定律,也可以确定一个新的态函数——熵。.可以用熵来对第二定律作定量的表述。 第二定律指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,由此可见,热力学系统所进行的不可逆过程的初态和终态之间有着重大的差异,这种差异决定了过程的方向,人们就用态函数熵来描述这个差异,从理论上可以进一步证明: 可逆绝热过程Sf=Si, 不可逆绝热过程Sf>Si, 式中Sf和Si分别为系统的最终和最初的熵。 也就是说,在孤立系统内对可逆过程,系统的熵总保持不变;对不可逆过程,系统的熵总是增加的。这个规律叫做熵增加原理。这也是热力学第二定律的又一种表述。熵的增加表示系统从几率小的状态向几率大的状态演变,也就是从比较有规则、有秩序的状态向更无规则,更无秩序的状态演变。熵体现了系统的统计性质。 第二定律在有限的宏观系统中也要保证如下条件: 1、该系统是线性的; 2、该系统全部是各向同性的。 另外有部分推论很有意思:比如热辐射:恒温黑体腔内任意任意位置及任意波长的辐射强度都相同,且在加入任意光学性质的物体时,腔内任意位置及任意波长的辐射强度都不变。

可以把整个宇宙看成是你所说的系统.

1.在孤立系中,能量总是从有序到无序。表明了一种能量的自发的衰减过程。用熵来描述混乱的状态。2.在热力学中具体还需要参看克7a686964616fe58685e5aeb931333366303232劳修斯和凯尔文的解释。开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不引起其它变化。克劳修斯表述:不可能使热量从低温物体传向高温物体而不引起其它变化。3.在热力学中主要揭示热机效率的问题。在其他方面,如进化论的证明方面也起作用。用生动的语句描述就是:你用餐后总是会花费的比你实际吃的要多。扩展资料:①热力学第二定律是热力学的基本定律之一,是指热永远都只能由热处转到冷处(在自然状态下)。它是关于在有限空间和时间内,一切和热运动有关的物理、化学过程具有不可逆性的经验总结。指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。自然界中任何形式的能都会很容易地变成热,而反过来热却不能在不产生其他影响的条件下完全变成其他形式的能,从而说明了这种转变在自然条件下也是不可逆的。热机能连续不断地将热变为机械功 ,一定伴随有热量的损失。第二定律和第一定律不同,第一定律否定了创造能量和消灭能量的可能性,第二定律阐明了过程进行的方向性,否定了以特殊方式利用能量的可能性。 ②人们曾设想制造一种能从单一热源取热,使之完全变为有用功而不产生其他影响的机器,这种空想出来的热机叫第二类永动机。它并不违反热力学第一定律,但却违反热力学第二定律。③从分子运动论的观点看,作功是大量分子的有规则运动,而热运动则是大量分子的无规则运动。显然无规则运动要变为有规则运动的几率极小,而有规则的运动变成无规则运动的几率大。一个不受外界影响的孤立系统,其内部自发的过程总是由几率小的状态向几率大的状态进行,从此可见热是不可能自发地变成功的。④热力学第二定律只能适用于由很大数目分子所构成的系统及有限范围内的宏观过程。而不适用于少量的微观体系,也不能把它推广到无限的宇宙。⑤根据热力学第零定律,确定了态函数——温度;根据热力学第一定律,确定了态函数——内能和焓;根据热力学第二定律,也可以确定一个新的态函数——熵。可以用熵来对第二定律作定量的表述。热力学第零定律用来作为进行体系测量的基本依据,其重要性在于它说明了温度的定义和温度的测量方法。表述如下:1、可以通过使两个体系相接触,并观察这两个体系的性质是否发生变化而判断这两个体系是否已经达到热平衡。2、当外界条件不发生变化时,已经达成热平衡状态的体系,其内部的温度是均匀分布的,并具有确定不变的温度值。3、一切互为平衡的体系具有相同的温度,所以一个体系的温度可以通过另一个与之平衡的体系的温度来表示,也可以通过第三个体系的温度来表示。参考资料:百度百科——热力学第二定律

第一,热力学第二定律的表述(说法)虽然繁多,但都反映了客观事物的一个共同本质,即自然界的一切自发过程都有“方向性”,并且一切自发过程都是不可逆的。第二,热力过程的方向性,是可以用“熵”来衡量的,也即孤立系的一切实际过程,其总熵是增加的,理想条件下(即可逆),总熵不变。 现以最常见的热力学二种说法进行理解。1、克劳修斯说法(1850年):热不可能自发地、不付代价地e5a48de588b6e799bee5baa631333262363739从低温物体传到高温物体。 解释: (1)这里需要强调的是“自发地、不付代价地”。我们通过热泵装置是可以实现“将热从低温物体传向高温物体的”,但这里是付出代价的,即以驱动热泵消耗功为代价,是“人为”的,是“强制”的,不是“自发”的。所以,非自发过程,如热从低温物体传向高温物体,必须同时要有一个自发过程为代价(这里是机械能转化为热能)为补偿,这个过程叫“补偿过程”。 (2)非自发过程(如热从低温物体传向高温物体)能否进行,还要看花的“代价”是否够,就是总系统(孤立系)的熵必须是增加的,或可逆下总熵不变。也就是说,如果投入的“代价”不够的话,非自发过程是不能进行的,或是进行得不够彻底(不能达到预计的状态)。孤立系总熵变不小于零,非自发过程才有可能进行。2、开尔文-普朗特说法(1851年):不可能制造出从单一热源吸热,使之全部转化为功而不留下其他任何变化的热力发电机。 解释: (1)这里强调的是“不留下其他任何变化”,是指对热机内部、外界环境及其他所有(一切)物体都没有任何变化。 开尔文-普朗特说法说明了热转化为功,必须要将一部分热量转给低温物体(注意,这可是一个自发过程,高温向低温传热哦),也即必须要有一个“补偿过程”为代价。 (2)热全部转化为功,是可以的,但必须要“留下其他变化”。如等温过程中,热可以全部转变成功,但这时热机内部工质的“状态”变了(即工质不能回到初始状态。其实,这样的热机实际上是不存在的),是留下了变化的。 总之,要正确理解热力学第二定律,以下几点是需要把握的:1、上述热力学第二定律的两种表述及其等效性;2、卡诺循环与卡诺定理、卡诺效率,且 ηT≤ ηC;3、克劳修斯积分等式和不等式;4、熵的过程方程式:dS≥dQ/Tr;5、孤立系统熵增原理:△Siso=∑△Si=Sg≥0;6、闭口系(控制质量)熵方程:dS=dSg+dQ/Tr;(开口系也要掌握好)7、能量贬值原理:dEx,iso≤0;8、熵产与机械能(火用)的损失关系:I=To×Sg 。 本回答被提问者采纳

开尔文表述:不可能从单一热源吸取热量,使之完全转变为有用功而不产生其它影响。这个表述透彻理解稍有难度。所谓单一热源,就是一个温度处处相等并且恒温的热库(热容量极大,不因吸放热而改变它的温度)。换句话可以这么说,要使热变成功又不产生其它影响,那么(系统、即工作物质)一定要与两个或以上的热源交换热量,即从高温热源吸热,将其中的一部分变为功,另一部分仍以热的形式放出系统(至低温热源)。任何的热机都是这样工作的,热机经历一个工作循环后系统和外界(两个或更多热源)总的看来,除了有热变功以外,没有其它任何变化。这就表明7a64e4b893e5b19e31333365656632热机的效率(不是机械效率,而是热功转化效率)不可能是100%(即便没有摩擦没有因漏气等因素存在的散热)。再换句话说,如果是100%(只吸热、不放热,吸的热全部变功),必然只涉及一个单一热源(假定有两个温度不同的热源与系统热交换,系统必然会从高温处吸热,低温处放热),从而与开表述矛盾。要使热机能够循环工作,向低温热源放热是必不可少的,不可避免的,这是大量实践证明的,开尔文正是将热机工作中这一规律用更准确的更普遍(也更抽象)的语言表述出来,才得到了热二律的开尔文表述(表述中并未涉及热机的字样,说明这个表述不仅的适用于热机还适用于任意的宏观过程)。开尔文表述还可以换成另一种表达:从单一热源吸取热量,使之完全转变为有用功,必定会产生其它影响。例如理想气体等温膨胀,过程中气体仅从一个热源吸热,而没有放热,理想气体等温膨胀,内能不变,故吸热全部变功,然而过程中除了热功转化外,还发生了其他变化,(气体体积变大了,压强变小了)。要使这个变化不发生,又要将热量全部变功(即效率100%),那就是不可能的。怎样才能让这个变化不发生呢?系统必须经历一个循环过程(经过一个循环系统体积、压强又复原了),任何热机想要连续工作(而不是膨胀一下就停止,这样的“一锤子买卖”),必须经历循环过程,而循环过程系统不可避免要与两个或以上温度不同的热源交换热量(高温处吸热,低温处放热,一条等温线不可能构成循环)。拓展知识:热力学三大定律:热力学第一定律是能量守恒定律。2.热力学第二定律有几种表述方式:克劳修斯表述为热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体;开尔文-普朗克表述为不可能从单一热源吸取热量,并将这热量完全变为功,而不产生其他影响。以及熵增表述:孤立系统的熵永不减小。3.热力学第三定律通常表述为绝对零度时,所有纯物质的完美晶体的熵值为零, 或者绝对零度(T=0K)不可达到。 本回答被网友采纳

理解封闭系统的热力学第二定律的熵自发增加原理,就是理解恐龙国家基因库内部的癌基础型(生殖细胞),自发复制遗传给全球下一代小恐龙的国家基因库内部,封闭数学循环,导致恐龙的癌基因年轻化的不可逆时间发展。

1.在孤立系中,能量总是从有序到无序。表明了一种能量的自copy发的衰减过程。用熵来描述混乱的状态。请参看熵的定义。2.在热力学中具体还需要参看克劳修斯和凯尔文的解释。开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不引起其它变化。克劳修斯表述:不可能使热量从低温物体传向高温物体而不引起其它变化。3.在热力学中主要揭示热机效率的问题。在其他方面,如进化论的证明方面也起作用。用生动的语句描述就是:你用餐后总是会花费的比你实际zhidao吃的要多。

热力学第二定律是阐明与热现象相关的各种过程进行的方向、条件及限度的定律。热力学第二定律指明了zhidao自然界的热功转化中的普遍规律,即热不可能全部转化为功,而不引起其它变化。热力学第二定律,指出了热功转化的效率的问题。即,热机的效率不可能达到100%. 所以常说的“第二类永动机无法实现”中的第二类永动机就是指热机效率为100%的热机。扩展资料热力学第二定律是从经验中得到的,它有几种表述方式。一般的表述为:任何一个专宏观过程向相反方向进行而不引起其它变属化是不可能的。我们来看一下其它的表述方式:1850年克劳修斯根据热传导的逆过程的不可能性提出:不可能把热量从低温物体传到高温物体而不引起其它变化;1851年开尔文根据摩擦生热的逆过程不可能性提出一个说法:不可能从单一热源取热使它全部变成功而不引起其它变化;奥斯特瓦尔德提出另外一个重要的说法:第二类永动机是不可能实现的。所谓的第二类永动机是指一个热机仅从单一热源吸收热而转变成功,而无其它变化。参考资料来源:百度百科-热力学定律

热力学第二定律是独立于热力学第一百定律的另一条基本规律。该定律不是由第一定律推演出来的,它涉及的问题不同于第一定律所涉及的范围,它是第一定律的补充。(1)第一定律只指出了效率η≯100%,第二定律指出的是效率η≠100%,说明度功可以全部变为热,而热量不能通过循环全部变为功,即机械能和内能是有区别的。(2)第一定律指出了热功等效和转换关系,指出任何过程中能量必须守恒。而第二知定律指出的是,并非所有能量守恒过程都能实现,低温热源的热量就不能自动地传向高温热源,揭示了过程进行的方向和条件。(3)第一定律没有温度的概念,但第二定律中有了温度的概念,提出了高温热源和低温热源的问题,提出了在不同的温差下,相同的热量道效果是不一样的,有必要加以区分。综上所述,内热力学第二定律是描述热量的传递方向的,其内容是:分子有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能。制冷装置就是根据热力学第二定律,用消耗机械能或热能作为补偿条件,把热量从低温热源(需要制冷的场所)容转移到高温热源(如冷凝器中的冷却水或空气),以达到制冷的目的。

热力学第二定律(second law of thermodynamics),热力学基本定律之一,克劳修斯表述为:热量不能自zhidao发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。熵增原理:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。扩展资料:热力学第二定律是建立在对实验结果的观测和总结的基础上的定律。虽然在过去的一百多年间未发现与第二定律相悖的实验现象,但始终无法从理论上严谨地证明第二定律的正确性。自1993年以来,Denis J.Evans等学版者在理论上对热力学第二定律产生了质疑,从统计热力学的角度发表了一些关于“熵的涨落“的理论,比如其中比较重要的权FT理论。而后G.M.Wang等人于2002在Physical Review Letters上发表了题为《小系统短时间内有悖热力学第二定律的实验证明》。从实验观测的角度证明了在一定条件下热,孤立系统的自发熵减反应是有可能发生的。

热力学第二定律是独立于热力学第一定律的另一条基本规律。该定律不是由第一定律推演出来的,它涉及的问题不同于第一定律所涉及的范围,它是第一定律的补充。(1)第一定律只指出了效率η≯100%,第二定律指出的是效率η≠100%,说明功可以全部变为热,而热量不能通过一循环全部变为功,即机械能和内来能是有区别的。(2)第一定律指出了热功等效和转换关系,指出任何过程中能量必须守恒。而第二定律指出的是,并非所有的能量守恒过程都能实现,低温热源的热量就不能自动地传向高温热源,揭示了过程进行的方向和条件。(3)第一定律没自有温度的概念,但第二定律中有了温度的概念,提出了高温热源和低温热源的问题,提出了不同温差下,相同热量的效果是不一样的,有必要加以区分。综上所述,热力学第二定律是描述热量的传递方向的,其内容是:分子zd有规则运动的机械能可以完全转化为分子无规则运动的热能;热能却不能完全转化为机械能。制冷装置就是根据热力学第二定律,用消耗机械能或热能作为补偿条件,把热量从低温热源(需要制冷的场所)转移到高温热源(如冷凝器中的冷却水或空气),从而达到制冷的目的。

热力学第zd二定律指明了自发过程的方向——总是朝着熵增大的方向进行。这一点我相信你明白。热量不借助环境做功而从低温物体传递到高温物体是熵减少过程。所以不能自发进行。那么为什么熵会减少? 熵是无序程度。一种最常见的表现就是分子热运动。于是人们想出用热量来表示无序度。但是人们又发现,同样的热量传递给低温物体和高温物体所导致的无序度增加是不一样的。就像在一间整洁版房间和一间凌乱的房间随便扔进10本书造成的混乱度增加是不同的一样。温度高的物体因为自身已经的无序程度已经很高了,所以再增加热量,改变会少权些。由此人们想出了对于环境熵增加的定义。S=q/T,可见温度越高,熵变会越少。那么如果热量q从低温物体t传导到高温物体T会发生什么?对于高温物体,会有熵增q/T。对于低温物体,会有熵减q/t。总效应为q/T-q/t。因为T>t,所以总熵效应为熵减少,这是热力学第二定律所不允许的。 本回答被提问者采纳

是不能自动由低温至高温 比如冰箱热量不会自动从低温物体到高温物体 需要人为 比如冰箱 通过电机让冷水进行循环 带走冰箱里的热量

热力学基本定律之一,克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之完全转换为有用的功而不产生其他影响。意义:热力学第二定律说明热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物体(克劳修斯表述);也可表述为:两物体相互摩擦的结果使功转变为热,但却不可能将这摩擦热重新转变为功而不产生其他影响。对于扩散、渗透、混合、燃烧、电热和磁滞等热力过程,虽然其逆过程仍符合热力学第一定律,但却不能自发地发生。热力学第一定律未解决能量转换过程中的方向、条件和限度问题,这恰恰是由热力学第二定律所规定的。扩展e799bee5baa6e4b893e5b19e31333431376662资料热力学第二定律是阐明与热现象相关的各种过程进行的方向、条件及限度的定律。由于工程实践中热现象普遍存在, 热力学第二定律应用范围极为广泛,诸如热量传递、热功互变、化学反应、燃料燃烧、气体扩散、混合、分离、溶解、结晶、辐射、生物化学、生命现象、信息理论、低温物理、气象以及其他许多领域。功可以自动地转化为热,功转热是不可逆过程, 其反向过程, 即降低流体的热力学能或收集散给环境的热量转化为功重新举起重物回复原位的过程, 则不能单独地、自动地进行, 热不可能全部无条件地转化为功。热量一定自动地从高温物体传向低温物体; 而反向过程, 热量由低温传回高温、系统回复到原状的过程,则不能自动进行, 需要依靠外界的帮助。参考资料来源:百度百科-热力学定律参考资料来源:百度百科-热力学第二定律

热力学第二定律是指热永远都只能由热处转到冷处(在自然状态下)。意义:热量可以自发地从较百热的物体传递到较冷的物体,但不能自发地从较冷的物体转移到较热的物体(克劳修斯陈述);也可以表示为:两个物体之间的摩擦使功变成热,但是,如果没有任何其他的影响,就不可能把摩擦热再变成功。对于扩散、度渗透、混合、燃烧、电热和磁滞等热力过程,虽然反向过程仍然符合热力学第一定律,但不能自发地发生。热力学第二定律并不能解决能量转换过程中的方向、条件和极限等问题,而热力学第二定律正是对这一问题的精确知规定。扩展资料:热力学第二定律的作用:1、 功热转化功可以自动转化为热道,这是一个不可逆的过程。相反的过程,即降低流体的热力学能或收集散落到环境中的热量转化为功,将重物抬回原位的过程,不能独立、自动地进行,也不能将热量全部无条件转化为功。2、热永远只能由热内处传到冷处(在自然状态下)。热量必须从高温物体自动传递到低温容物体;而在反向过程中,从低温回到高温、系统回到原始状态的热量传递不能自动进行,这需要外界的帮助。参考资料来源:百度百科-热力学第二定律参考资料来源:百度百科-热力学定律 本回答被网友采纳

热力学第二定律。热力学基本定律之一,克劳修斯表述为:热量不能自发地从低温物体转移到高温物体。开尔文表述为:不可能从单一热源取热使之来完全转换为有用的功而不产生其他影响。熵增原理:不可逆热力过程中熵的微增量总是大于零。在自然过程中,一个孤立系统的总混乱度(即“熵”)不会减小。扩展资料条件第二定律在有限的宏观系统中自也要保证如下条件:1.该系统是线性的;2.该系统全部是各向同性的。另外有部分推论:比如热辐射:恒温黑体腔内任意位置及任意波长的辐射强度都相同,且在加入任意光学性质的物体时,腔内任意位置及任意波长的辐射强度都不变。参考资料来源:百度百科-热力学第二定律 本回答被网友采纳

热力学第二定律是从经验中得到的,它有几种表述方式。一般的表述为:任何一个宏观过程向相反方向进行而不引起其它变化是不可能的。1850年克劳修斯根据热传导的逆过程的不可能性提出:不可能把热量从低温物体传到高温物体而不引起其它变化;1851年开尔文根据摩擦生热的逆过程不可能性提出一个说法:不可能从单一热源取热使它全部变成功而不引起其它变化;奥斯特瓦尔德提出另外一个重要的说法:第二类永动机是不可能实现的。所谓的第二类永动机是指一个热机仅从单一热源吸收热而转变成功,而无其它变化。意义:热力学第二定律进一步指出,虽然能量可以转化,但是无法100%利用。在转化过程中,总是有一部分能量会被浪费掉。比如,汽油含有的能量可以转化成发动机的能量,但是会伴随产生大量的热能和废气。即使科技再发达,也无法将被浪费的能量减小至零。扩展资料热力学的两个定律可以用一句简短的句子来表达:宇宙的能量总和是个常数,总的熵e5a48de588b67a6431333431376639是不断增加的。- 熵是不能再被转化作功的能量的总和的测定单位。- 能量只能沿着一个方向----即耗散的方向----转化,那么污染就是熵的同义词。- 世界的熵(即无效能量的总和)总是趋向最大的量的。- 在一个封闭的系统里,物质的熵最终将达到最大值。- 当熵处于最小值,即能量集中程度最高、有效能量处于最大值时,那么整个系统也处于最有序的状态。相反,熵为最大值、有效能量完全耗散的状态,也就是混乱度最大的状态。- 如果没有外界作用,那么物体是不会自动趋于井井有条的状态的,每个打扫过房间或在办公室工作过的人都知道,如果东西不加收拾,那么它们就会越来越乱。而要使物体重新归于秩序那就又要进一步花费能量。参考资料来源:百度百科-热力学定律 本回答被网友采纳

热力学第二定律 第1张

热力学第二定律可以说是热力学中最具生机和活力的部分。1850年,克劳修斯结合焦耳的发现以及卡诺的理论,总结成了热力学第一和第二定律。他引入了"熵"的概念。将热力学第二定律表述为:对一热力学系统所经历的任一不可逆过程,其熵变必须大于零,所以热二律又被称为"熵增加原理"。热力学第二定律真实的反映了热力学系统的方向性和不可逆性,但当其应用于宇宙时,却得出了一个令人生畏的结论热寂说!热寂说指出:如果热二律是正确的,那么宇宙这个系统的熵将最终趋向一个最大值。克劳修斯曾指出"宇宙越是接近熵为最大值的极限状态,它继续发生变化的可能性就越小,当它最后完全达到这个状态时,就不会再出现进一步的变化了,宇宙将是一种永恒的死寂状态"。拓展资料:热力学第二定律(second law of thermodynamics),热力学基本定律之一,其表述为:不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微增量总是大于零。又称"熵增定律",表明了在自然过程中,一个孤立系统的总混乱度(即"熵")不会减小。1824年,法国工程师萨迪·卡诺提出了卡诺定理。德国人克劳修斯(Rudolph Clausius)和英国人开尔文(Lord Kelvin)在热力学第一定律建立以后重新审查了卡诺定理,意识到卡诺定理必须依据一个新的定理,即热力学第二定律。他们分别于1850年和1851年提出了克劳修斯表述和开尔文表述。这两种表述在理念上是等价e69da5e887aae799bee5baa631333365656533的。违背热力学第二定律的永动机称为第二类永动机。

热力学第2定律的广义表述:1切孤立系统的熵永不减少(不可逆)熵乃是描述系统混乱程度的物理量1旦1个系统的熵到极大值复,系统即达热平衡态,此后系统的宏观状态将不再发生变化生物属于耗散系统,通过不断和外环境交换能量、物质和熵来使自身处于低熵的有序状态,维持自制身的稳定,因此生物体的熵增加到1定程度,体内微百环境的稳态便会崩溃,生物也就死了所谓“死”即是熵;“死期”,即是系统的熵到达极大值,进入热平衡态的时刻;系统演化到平衡态所需的时间,即是所谓的度“寿命"所有事物都必有终结消灭(熵达到极大值,进入热平衡态)时而这终结的时间在事物从远离平衡态的低熵有序状态诞生的瞬间就早被熵增原理决定﹐也就是所谓的知死期有低熵有序的开端,就1定因熵增的趋势而有结束;因此能将其归于虚无根据“寿命”的定义,这也可说成将“寿命”耗尽而“杀死”系统只是由于需要活化能而在1般情道况下不会自行裂开,使熵进1步增加

热力学第二定律 第2张

热力学第二定律可以说是热力学中最具生机和活力的部分。1850年,克劳修斯结合焦耳的发现以及卡诺的理论,总结成了热力学第一和第二定律。他引入了"熵"的概念。将热力学第二定律表述为:对一热zhidao力学系统所经历的任一不可逆过程,其熵变必须大于零,所以热二律又被称为"熵增加原理"。热回力学第二定律真实的反映了热力学系统的方向性和不可逆性,但当其应用于宇宙时,却得出了一个令人生畏的结论热寂说!热寂说指出:如果热二律是正确的,那么宇宙这个系统的熵将最终趋向一个最大值。克劳修斯曾指出"宇宙越是接近熵为最大值的极限状态,它答继续发生变化的可能性就越小,当它最后完全达到这个状态时,就不会再出现进一步的变化了,宇宙将是一种永恒的死寂状态"。 本回答被网友采纳

根据热力学第二定律,物理学无法研究出来永动机。人类的医学高科技也无法研究出来长生不老药物来,前几年热火朝天的干细胞长生不老的永生,也令却了。秦始皇,年年研究长生不老也失败了。因为DNA的免疫功能的时间源坐标的热力学第二定律的效率损失,导致细胞癌变,终于导致永生的彻底失败。熵决定了长生不老的zhidao失败。