高中数学数列求解方法

①等差数列和等比数列有通项公式②累加法:用于递推公式为  ,且f(n)可以求和③累乘法:用于递推公式为  且f(n)可求积④构造法:将非等差数列、等比数列,转换成相关的等差等比数列⑤错位相减法:用于形如数列由等差×等比构成:如an=n·2^n

数学这么学科万变不离其宗。比如你问数列的求解方法。那么你就要明白数列是什么。哪几种数列,每一种数列的基本性质是什么样子的。比如等差数列,你要明白等差数列是怎么一回事。然后书上的公式是怎么来的。也就是知其然,更要知其所以然。等你彻底理解的数列后,相信所谓求解数列问题,应该不是难事。 追问 主要是那些求和公式跟告诉你某个项或几个项的关系,求和或求An,有点不理解 追答 如果是求和公式不理解,那么就是你书本没有看透哦。这些东西书本上肯定说明的很详细的。至于告诉你几个项这种题目,根据一些基本式子解即可,当然有些结论平时做题时候也可以积累,但是还是那句话,书本要看透,才出来做题,否则,事倍功半。 本回答被提问者采纳

数列求和常见的有:裂项相消法,错位相减法,分组求和法,倒序相加法和公式法数列通项公式的求法主要有:累加法,累乘法,转化法,递推法(an=sn-sn-1) 追问 可以具体说说那些方法的公式么? 追答 分式常用裂项相消法,由等差和等比对应项相乘得到的数列用错位相减法,由等差和等比相加或相减得到的数列用分组求和法,等差数列求和用倒序相加法

求通项公式的方法:定义法,累加法,累乘法,Sn-Sn-1=an;S1=a1求前N项和的方法:错位相减法,裂项相消法,分组相加法

数列是很难的,尤其是和奥数沾点边的话更难。数列的解法很多,方法也很多。但最基本的公式和一些变形一定要记牢。因为不管再难它都是以他们为基础的。高考的时候数列的题一般不难,公事记住基本都会作。再有都接触数列的题,最好有代表性的。记住这些题的解题方法。不要死记题,记的是方法。

由于无法编辑公式,具体方法,看下图:知识点三:数列应用问题 1.数列应用问题的教学已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.   2.建立数学模型的一般方法步骤. ①认真审题,准确理解题意,达到如下要求:   ⑴明确问题属于哪类应用问题;   ⑵弄清题目中的主要已知事项;   ⑶明确所求的结论是什么. ②抓住数量关系,联想数学知识和数学方法,恰当引入参数变量或适当建立坐标系,将文字语言翻译成数学语言,将数量关系用数学式子表达.   ③将实际问题抽象为数学问题,将已知与所求联系起来,据题意列出满足题意的数学关系式(如函数关系、方程、不等式).  规律方法指导 1.由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想;   2.数列是一种特殊的函数,学习时要善于利用函数的思想来解决.如通项公式、前n项和公式等. 3.加强数列知识与函数、不等式、方程、对数、立体几何、三角等内容的综合.解决这些问题要注意: (1)通过知识间的相互转化,更好地掌握数学中的转化思想;   (2)通过解数列与其他知识的综合问题,培养分析问题和解决问题的综合能力. 

多总结多做题,题型就那么几种,做得多了自然就明白了 追问 多看例题行吗? 追答 数学不能光看,一定要亲手做一些题,做到一定程度了,能认识到题目的用意了就可以少做一些多看 本回答被提问者采纳

数列问题解题方法技巧1.判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证 为同一常数。(2)通项公式法:①若 = +(n-1)d= +(n-k)d ,则 为等差数列;②若 ,则 为等比数列。(3)中项公式法:验证中项公式成立。2. 在等差数列 中,有关 的最值问题——常用邻项变号法求解: (1)当 >0,d<0时,满足 的项数m使得 取最大值.(2)当 <0,d>0时,满足 的项数m使得取最小值。在解含绝对值的数列最值问题时,注意转化思想的应用。3.数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。三、数列问题解题注意事项1.证明数列 是等差或等比数列常用定义,即通过证明 或 而得。2.在解决等差数列或等比数列的相关问题时,“基本量法”是常用的方法,但有时灵活地运用性质,可使运算简便,而一般数列的问题常转化为等差、等比数列求解。3.注意 与 之间关系的转化。如: = , = .4.数列极限的综合题形式多样,解题思路灵活,但万变不离其宗,就是离不开数列极限的概念和性质,离不开数学思想方法,只要能把握这两方面,就会迅速打通解题思路.5.解综合题的成败在于审清题目,弄懂来龙去脉,透过给定信息的表象,抓住问题的本质,揭示问题的内在联系和隐含条件,明确解题方向,形成解题策略.原文链接: http://www.90house.cn/shuxue/zhishi/288.html 本回答由网友推荐

套公式

高中数学数列求解方法 第1张

数学是高中学习中的一门关键学科,无论是文科生还是理科生,数学对于他们来说都是富有挑战性的科目.高中阶段,时间紧、任务重,许多同学尽管花了较多时间在数学上但仍然见效甚微。看着离高考时间越来越近,和理想的成绩越来越远,刷题没效果,心中定有一百个不爽 在不认识肖博数学之前,高考数学对于很多高考生来说都是一场噩梦,既然有梦,何不破解?肖博数学是肖博老师用九年时间精研出的一套完整高中数学教学方案,致力于高中数学题型归类,技巧讲解,本套课程颠覆了传统教学模式与教学风格,完整的课程体系配合独创5秒解题思路,助力考生数学成绩飞速提升,更有数百位同学高考数学成绩130+。用了肖老师的高考数学之等差数列快速解题法,你会发现,其实高考数学题型之等差数列求解也就那么回事。高中数学,学会巧凑等差数列前n项和公式,解题思路瞬间明朗在等差数列的一些题型中,需要凑出数列的前n项和公式,特别是在给出两个等差数列前n项和的比值,求数列其中两项的比值这样的题型中,通过凑出前n项和公式会大大提高解题的效率。仔细分析下面的过程,理解如何一步一步把两个等差数列项之比凑出前11项和之比(红色部分)。本题借助了等差中项,第n项是第1项和第2n-1项的等差中项,根据等差中项的性质把第n项的比值转化为第1项与第2n-1的和的比值,然后再凑出前2n-1项和公式(红色部分)。等差数列是高中阶段极其重要的知识点,近几年也逐渐成为了高考的主要考点之一。高考中所有对等差数列的考察,其实都是在考察高中生对于知识的掌握程度以及创新思维能力。。数学是教学中的基础学科,随着学生学龄的增加,数学课程的难度也随之增加.解题较难是当前高中学生面临的主要问题,为了有效改善这一现状,教师在进行高中数学解题教学过程中应转变教学观念、教学方法,突破常规解题方法.在此背景下,构造法在高中数学解题中得到了有效应用.通过构造法的应用可将抽象问题形象化,复杂问题简单化,激发学生的解题热情,增强解题信心,最终提高解题效率.数列的题目中数据相对比较复杂,但是同学们如果学习了肖老师的方法,就会体验到学霸秒题的技巧, 相信大家看完后对高考数学等差数列有了不少的认识,用最简单的方法帮助高考生圆梦,十年磨一剑,实力今朝现,祝大家金榜题名。

1利用待定常数法(重点)例1 已知数列{n }中,若1=1,且n+1=3n-4(n=1,2,3,…). 求数列的通项公式n. 分析:若关系式是n+1=3n即为等比数列,因此考虑处理-4,若能化为n+1+x=3(n+x),则可构造等比数列{n+x}。 解:设n+1=3n-4恒等变形为n+1+x=3(n+x),即n+1=3n+2x,比较系数得:x=-2 n+1-2=3(n-2) 数列{n-2}是以1-2=-1为首项,公比为3的等比数列 n-2=(-1)3n-1 即n = -3n-1+2. 说明:给出一阶递推关系式形如 (n=1,2,…),A、B为常数,均可使用待定常数法,构造等比数列求出通项。 例2 已知数列{n }中,前n项和sn = 2n-3n, 求数列的通项公式n. 分析:已知等式中不是递推关系式,利用可转化为:n -2n-1=2,考虑3n-1是变量,引入待定常数x时,可设n- x=2(n-1- x),从而可构造等比数列。 解:1=s1=21-3 则1=3, 当n2时, =(2n-3n)-(2n-1-3n-1)即n-2n-1=2 ,设其可恒等变形为:n- x=2(n-1- x),(需要注意的是上面的指数,这是某种关系而不是固定的常数,故在恒等变形时需注意两边对应的关系,而不应该用X代替x,也可以不设“-”设“+”,结果是一样的。) 即 n -2n-1=x ,比较系数得:x=2. n- 2=2(n-1- 2 ) 数列{n- 2}是以1-6=-3为首项,公比为2的等比数列。 n- 2=(-3)2n-1 n=2-3.说明:对于型如n=An-1+f(n)(A为常数)的一阶递推关系式。可利用待定常数法,构造等比数列;但须体现新数列相邻两项的规律性,设其可恒等变形为:n- xg(n)=A[n-1- xg(n-1)],若x存在,则可构造等比数列{ n- xg(n)}。 2 利用配方法 有些递推关系式经“配方”后,可体现等差(比)的规律性。 例3 设n0,1=5,当n2时,n+n-1=+6, 求数列的通项公式n。 分析:给出的递推关系式不能反映规律性,因此考虑去分母得:2n-2n-1=7+6(n-n-1),为体现规律性,变形为:2n-2n-1-6n+6n-1=7,即(n-3)2-(n-1-3)2=7. 解:由n+n-1=+6(n2)变形为: 2n-2n-1=7+6(n-n-1) 即(n-3)2-(n-1-3)2=7 (n2) 数列{ }是以(1-3)2=4为首项,公差为7的等差数列 =4+7(n-1)=7n-3,而n0 n=+3 说明:递推关系式中含有二次项、一次项时可考虑用配方法,揭示规律,构造等差(比)数列。3 利用因式分解有些递推关系式经因式分解后,可体现等差(比)的规律性。 例4已知数列{n }是首项为1的正项数列,且2n+1 + 3n+1 - 22n + 3n - nn+1=0求数列的通项公式n。 分析:由已知递推关系式,若配方,则无法配成完全平方或完全平方项之和。因此考虑用因式分解化简,寻求更实质的关系。可变形为:n+1(n+1 +3)+3n - nn+1 +n(-2n)=0。解:由已知有:n+1(n+1 +3)+3n - nn+1 +n(-2 n)=0 (n+1 + n)[(n+1 + 3)-2n]=0,而n0 n+1 + 3 -2n=0,则利用待定常数法有(n+1 - 3)-2(n -3)=0 数列{n -3}是以1-3=-2为首项,公比为2的等比数列。 n-3 =(-2)2n-1 即n = 3-2n 说明:因式分解能达到化简的目的,使递推关系式简化,凸显规律性。 5 利用倒数有些数列的递推关系式,经取倒数变形后,显现出规律性,可构造等比(差)数列。例7 已知x1=1,x2=2,xn+ 2=,试求xn 。分析:由递推关系式结构特征,易联想到倒数,即有 xn+2 =,从而 =,可构造等比数列。解:对递推关系式两边取倒数得:= 可变形为=(-)() 数列{}是以=-为首项,公比为-的等比数列 =(-)(-= (n2) =+()+()+ … +() = 1 + (-)+(-)2 + … + = + (n2) = (n2) 而当n=1时亦满足。 = (n1) 说明:递推关系式中含有相邻两项之积与相邻两项之和的关系,可考虑取倒数(或化为分式),揭示规律,构造等比(差)数列。 例8已知数列{n }中,1=7,n2时,,求数列的通项公式n 分析:已知递推关系式右边为分式,取倒数后可化为:,未能反映规律, 但若能化为的关系,则可揭示规律;结合待定常数法,可确定A值。解:由已知: (A0)即(2A+1≠0) 令,解得:A=1 已知关系式可恒等变形为,取倒数得: (n2)。 数列{}是以=为首项,公差为的等差数列。 = +(n-1),即 (n1) 说明:①例8中的递推关系式结构特征,亦易想到取倒数,但要灵活结合待定常数法,构造新数列,凸显等差的规律性。 ②引入待定常数A是为了揭示变化的一致性(规律性),若A值存在,则可反映此变化规律。若A值不存在,则考虑其它变形。6 利用换元 有些数列的递推关系式看起来较为复杂,但应用换元和化归思想后,可构造新数列进行代换,使递推关系式简化,从而揭示等差(比)规律,求出通项。 例9已知数列{an }中, 求(1981年第22届IMO预选题)。 分析:已知递推关系式中的较难处理,考虑用换元去掉根式,即令(0)。 解:令,则=5, 0,从而= 由已知递推关系式有: 化简得:=()2 2=, 由待定常数法得:2(-3)= -3数列{-3}是以-3=2为首项,公比为的等比数列。-3=2()n-1 即 = + 3== (n1) 说明:对于递推关系式中较难处理的根式(比如不能反映相邻项的规律性),可采用换元去掉根式,化简递推关系式,揭示相邻项的变化规律,构造等比(差)数列。 例10 设=1,=(nN),求证:(1990年匈牙利奥林匹克试题)。 分析:比较已知与结论,应先求通项公式。待证的不等式中含有,且已知递推关系式中含有,据此两个信息,考虑进行三角代换,化简递推关系式。 证明:由已知0,引入数列{}使=tan,(0,) 由已知有:= 即=,又=1,,从而 即数列{}是以为首项,公比为的等比数列 = = , 而当x(0,)时,有tanxX = tan 说明:对于递推关系式中,型如可考虑采用三角代换,化简递推关系式,揭示规律性。 总之,构造等比(差)数列关键在于抓住递推关系式的结构特征,选择恰当方法进行恒等变形,往往能揭示等比(差)规律,顺利求出通项。 参考文献:⑴ 罗增儒. 递推数列.«高考到竞赛»(数学),陕西师范大学出版社,2002,7。⑵ 陈传理、刘诗雄. 递推数列.«高中数学竞赛名师讲座»,华中师范大学出版社,1993,4。⑶ 秦永. 递推数列.中学数学教学参考(陕西师范大学),2003(4)。⑷ 樊友年.构造法解数列综合题. 中学数学教学参考,2002(7)。 参考资料: http://www.lfqezx.com/Article/UploadFiles/200812/2008122510045651.doc

高中数学数列求解方法 第2张

事无巨细,说实话要全部是不可能的,几个常用的还是有的:1.裂项:常用极品;2.构造:解数列的巅峰做法,很酷,但考试写上去遇见一个水平挖的老师, 背叛错的可能性很大;3.利用等差等比数列:常见且相对容易搞定;4.倒序相加:思想很好,有些可以化为这一类,错位相加有时也可以用, 具体看情况;5.利用指数对数的性质:指数可以把加法变成乘法,对数反之 可将乘法变成加法;----------------------------------------------------------------最后说的不是方法是一种必须的想法:当你遇见一道数列题的时候,当给你一个递推公式时,你的第一印象是这个公式像什么,比如你见到a(2n)=2an^2-1你能不能想到cos(2n)=2cos(n)^2-1;这样想是因为形式相同或相似的式子,通常具有相同或相似的性质,这样你就有了总的方向,于是事半功倍,水到渠成!这种想法也是构造的力量源泉。

其实我所作的不过是剪刀加糨糊的工作 希望对你有是所帮助构造法求数列的通项公式 在数列求通项的有关问题中,经常遇到即非等差数列,又非等比数列的求通项问题,特别是给出的数列相邻两项是线性关系的题型,在老教材中,可以通过不完全归纳法进行归纳、猜想,然后借助于数学归纳法予以证明,但新教材中,由于删除了数学归纳法,因而我们遇到这类问题,就要避免用数学归纳法。这里我向大家介绍一种解题方法——构造等比数列或等差数列求通项公式。 构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,有时会联想出一种适当的辅助模型,以此促成命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式,此类题通常较难,但使用构造法往往给人耳目一新的感觉. 供参考。 1、构造等差数列或等比数列 由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法.3、构造商式与积式 构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简单方法. 4、构造对数式或倒数式 有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决. 参考资料: 百度知道

http://zhidao.baidu.com/question/74047314.html

你可以在百度上搜或买本书一般回答的都是从网页上粘贴下来的

17.(1)Sn=a<n+1>,①令n=1,得a2=S1=a1=1.n>1时S<n-1>=an,②①-②,得an=a<n+1>-an,a<n+1>=2an,∴an=a2*2^(n-2)=2^(n-2),n>1;....a1=1.(2)Tn=1+2+3*2+4*2^2+……+n*2^(n-2),③2Tn=..........2+4+3*2^2+……+(n-1)*2^(n-2)+n*2^(n-1),④④-③,得Tn=-3-[2^2+2^3+……+2^(n-2)]+n*2^(n-2)=-3-[2^(n-1)-4]+n*2^(n-1)=(n-1)*2^(n-1)+1. 本回答由网友推荐

不懂可以再问

数学这么学科万变不离其宗。比如你问数列的求解方法。那么你就要明白数列是什么。哪几种数列,每一种数列的基本性质是什么样子的。比如等差数列,你要明白等差数列是怎么一回事。然后书上的公式是怎么来的。也就是知其然,更要知其所以然。等你彻底理解的数列后,相信所谓求解数列问题,应该不是难事。